(本小題滿分12分)已知函數(shù)是上的奇函數(shù),且單調(diào)遞減,解關(guān)于的不等式,其中且.
解:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0e/7/cra322.gif" style="vertical-align:middle;" />是上的奇函數(shù),
所以可化為.
又單調(diào)遞減,且,所以,即. ……………….4分
①當(dāng)時(shí),,而,所以;……………………………6分
②當(dāng)時(shí),,解得或;…………………..8分
③當(dāng)時(shí),,而,所以. ……………………………….10分
綜上,當(dāng)或時(shí),不等式無解;當(dāng)時(shí),不等式的解集為. ………………………………………………12分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知定義域?yàn)镽的函數(shù)是奇函數(shù).
(Ⅰ)求a的值,并指出函數(shù)的單調(diào)性(不必說明單調(diào)性理由);
(Ⅱ)若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù).
(1)若對任意恒成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)的圖像與直線有且僅有三個(gè)公共點(diǎn),且公共點(diǎn)的橫坐標(biāo)的最大值為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)(m為常數(shù),且m>0)有極大值9.
(1)求m的值;
(2)若斜率為-5的直線是曲線的切線,求此直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=ax2+(b-8)x-a-ab , 當(dāng)x(-∞,-3)(2,+∞)時(shí), <0,當(dāng)x(-3,2)時(shí)>0 .
(1)求在[0,1]內(nèi)的值域.
(2)若ax2+bx+c≤0的解集為R,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)求解析式并判斷的奇偶性;
(2)對于(1)中的函數(shù),若當(dāng)時(shí)都有成立,求滿足條件的實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知定義在區(qū)間上的函數(shù)為奇函數(shù)且
(1)求實(shí)數(shù)m,n的值;
(2)求證:函數(shù)上是增函數(shù)。
(3)若恒成立,求t的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)在其定義域上滿足.
(1)函數(shù)的圖象是否是中心對稱圖形?若是,請指出其對稱中心(不證明);
(2)當(dāng)時(shí),求x的取值范圍;
(3)若,數(shù)列滿足,那么:
①若,正整數(shù)N滿足時(shí),對所有適合上述條件的數(shù)列,恒成立,求最小的N;
②若,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com