18.在等差數(shù)列{an}中,d>0,若a1+a4+a7=12,a1a4a7=28,數(shù)列{bn}是等比數(shù)列,b1=16,a2b2=4.
(1)求{an}和{bn}的通項公式;
(2)令${c_n}={a_n}•{b_n}(n∈{N^*})$,求{cn}的前n項和Tn

分析 (1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出.
(2)${c_n}=n•{2^{n-1}}$,利用“錯位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:(1)設{an}公差為d,{bn}公比為q.
由a1+a7=2a4,得3a4=12,即a4=4.
再結合題意,得$\left\{\begin{array}{l}{a_1}+{a_7}=8\\{a_1}{a_7}=7\end{array}\right.$,
解得$\left\{\begin{array}{l}{a_1}=1\\{a_7}=7\end{array}\right.$或$\left\{\begin{array}{l}{a_7}=1\\{a_1}=7\end{array}\right.$(舍).
由a1=1,a7=7,得$d=\frac{{{a_7}-{a_1}}}{7-1}=1$.
故an=a1+(n-1)d=n.
在數(shù)列{bn}中,$\left\{\begin{array}{l}{b_5}=16\\ 2{b_2}=4\end{array}\right.$,解得q=2.
所以${b_n}={2^{n-1}}$.
(2)因為${c_n}=n•{2^{n-1}}$,
所以${T_n}=1•{2^0}+2•{2^1}+3•{2^2}+…+n•{2^{n-1}}$.
又$2{T_n}=1•{2^1}+2•{2^2}+3•{2^3}+…+n•{2^n}$.
以上兩式作差,得$-{T_n}=1+{2^2}+{2^3}+…+{2^{n-1}}+n•{2^n}$,
所以${T_n}=(n-1)•{2^n}+1$.

點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.命題“所有能被7整除的數(shù)都是奇數(shù)”的否定是( 。
A.所有不能被7整除的數(shù)都是奇數(shù)B.所有能被7整除的數(shù)都不是奇數(shù)
C.存在一個不能被7整除的數(shù)是奇數(shù)D.存在一個能被7整除的數(shù)不是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,點P在橢圓上,且△PF1F2是高為$\sqrt{3}$的等邊三角形
(1)求橢圓C的方程
(2)已知動點Q(m,n)(mn≠0)在橢圓C上,點A(0,$\sqrt{3}$),直線AQ交x軸于點M,點Q′為點Q關于x軸的對稱點,直線AQ′交x軸于點N,若在y軸上存在點K(0,t),使得∠OKM=∠ONK,求滿足條件的點K的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.${(1+x)^5}{(1+\frac{1}{x})^5}$的展開式中的常數(shù)項為252.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知△ABC的三邊長a,b,c成遞減的等差數(shù)列,若$B=\frac{π}{4}$,則cosA-cosC=( 。
A.$-\sqrt{2}$B.$\sqrt{2}$C.$-\root{4}{2}$D.$\root{4}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在空間直角坐標系中,點A(-1,2,m)和點B(3,-2,2)的距離為4$\sqrt{2}$,則實數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知以A(-1,2)點為圓心的圓與直線${l_1}:\frac{1}{2}x+y+\frac{7}{2}=0$相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,Q是MN的中點,直線l與l1相交于點P.
(1)求圓A的方程;
(2)當$|{MN}|=2\sqrt{19}$時,求直線l的方程;
(3)求證:$\overrightarrow{BP}•\overrightarrow{BQ}=-5$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某同學收集了班里9名男生50m跑的測試成績(單位:s):
6,4、7.5、8.0、6.8、9.1、8.3、6.9、8.4、9.5,并設計了一個算法可以從這些數(shù)據(jù)中搜索出小于8,0的數(shù)據(jù),算法步驟如下:
第一步:i=1
第二步:輸入一個數(shù)據(jù)a
第三步:如果a<8.0,則輸出a,否則執(zhí)行第四步
第四步:i=i+1
第五步:如果i>9,則結束算法,否則執(zhí)行第二步
請你根據(jù)上述算法將下列程序框圖補充完整.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設函數(shù)f(x)=|x-a|+|x-5|,x∈R.
(1)當a=2時,求不等式f(x)≥5的解集;
(2)已知a<5,若關于x的方程f(x)=ax有且只有兩個實數(shù)解,求正實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案