A. | [-2,2] | B. | (-∞,-$\frac{1}{2}$]∪[$\frac{1}{2}$,+∞) | C. | (-∞,-2]∪[2,+∞) | D. | [-$\frac{1}{2}$,$\frac{1}{2}$] |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義建立不等式關(guān)系進(jìn)行求解即可.
解答 解:畫出可行域(如圖陰影部分所示),直線y=ax-2恒過點A(0,-2),
則直線與區(qū)域D有公共點時滿足a≥kAB或a≤kAC.
而${k_{AB}}=\frac{{0-({-2})}}{1-0}=2$,${k_{AC}}=\frac{{0-({-2})}}{-1-0}=-2$,
則a≥2或a≤-2,
故選:C
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用直線斜率以及數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$-$\frac{i}{2}$ | B. | -$\frac{1}{2}$+$\frac{i}{2}$ | C. | $\frac{1}{2}$-$\frac{i}{2}$ | D. | $\frac{1}{2}$+$\frac{i}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30 | B. | 32 | C. | 36 | D. | 48 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com