7.在直角坐標系xOy中,已知點P(1,-2),直線$l:\;\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$( t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=2cosθ,直線l和曲線C的交點為A、B.
(1)求直線l和曲線C的普通方程;
(2)求|PA|+|PB|的值.

分析 (1)利用三種坐標的互化方法,求直線l和曲線C的普通方程;
(2)將直線l的標準參數(shù)方程代入曲線C:y2=2x中,得t2-6$\sqrt{2}$t+4=0,利用參數(shù)的幾何意義求|PA|+|PB|的值.

解答 解:(1)直線$l:\;\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$( t為參數(shù)),消去t,可得直線l的普通方程為x-y-3=0;
曲線C的極坐標方程為ρsin2θ=2cosθ,即為ρ2sin2θ=2ρcosθ,
由x=ρcosθ,y=ρsinθ,可得曲線C的普通方程為 y2=2x;
(2)將直線l的標準參數(shù)方程代入曲線C:y2=2x中,
可得t2-6$\sqrt{2}$t+4=0,即有t1+t2=6$\sqrt{2}$,t1t2=4,由于t1>0,t2>0
則|PA|+|PB|=|t1|+|t2|=t1+t2=$6\sqrt{2}$.

點評 本題考查三種方程的互化,考查參數(shù)幾何意義的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}-2{x^2}-4x+1,\;\;x≤0\\ x+1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;x>0.\end{array}\right.$
(1)計算f(f(${log_2}\frac{1}{4}$))的值;
(2)討論函數(shù)f(x)的單調(diào)性,并寫出f(x)的單調(diào)區(qū)間;
(3)設(shè)函數(shù)g(x)=f(x)+c,若函數(shù)g(x)有三個零點,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將某班的60名學(xué)生編號為01,02,…,60,采用系統(tǒng)抽樣方法抽取一個容量為5的樣本,且隨機抽得的一個號碼為03,則剩下的四個號碼依次是15,27,39,51.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知中心在原點,焦點在坐標軸上的橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)它的離心率為$\frac{{\sqrt{3}}}{3}$,一個焦點是(-1,0),過直線x=3上一點M引橢圓E的兩條切線,切點分別是A和B.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若在橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點(x0,y0)處的切線方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$=1.求證:直線AB恒過定點,并求出定點的坐標;
(Ⅲ)記點C為(Ⅱ)中直線AB恒過的定點,問是否存在實數(shù)λ,使得$|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=λ|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|$成立,若成立求出λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.集合A={x||x-1|<2},B={x|$\frac{1}{9}$<3x<9},則A∩B=( 。
A.(-1,3)B.(-1,2)C.(-2,2)D.(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.從某校高一年級1000名學(xué)生中隨機抽取100名測量身高,測量后發(fā)現(xiàn)被抽取的學(xué)生身高全部介于155厘米到195厘米之間,將測量結(jié)果分為八組:第一組[155,160),第二組[160,165),…,第八組[190,195),得到頻率分布直方圖如圖所示.
(Ⅰ)計算第三組的樣本數(shù);并估計該校高一年級1000名學(xué)生中身高在170厘米以下的人數(shù);
(Ⅱ)估計被隨機抽取的這100名學(xué)生身高的中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖是某幾何體的三視圖且a=b,則該幾何體主視圖的面積為(  )
A.$\sqrt{6}$B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,圓錐的軸截面SAB是正三角形,O為底面中心,M為線段SO中點,動點P在圓錐底面內(nèi)(包括圓周),若AM⊥MP,則點P的軌跡為( 。
A.線段B.C.橢圓D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知曲線C1:y2=tx(y>0,t>0)在點M($\frac{4}{t}$,2)處的切線與曲線C2:y=ex+1-1也相切,則tln$\frac{4{e}^{2}}{t}$的值為( 。
A.4e2B.8eC.2D.8

查看答案和解析>>

同步練習(xí)冊答案