8.如圖一,在邊長為2的等邊三角形ABC中,D、E、F分別是BC、AB、AC的中點,將△ABD沿AD折起,得到如圖二所示的三棱錐A-BCD,其中$BC=\sqrt{2}$.
(1)證明:AD⊥BC;
(2)求四棱錐D-EFCB的體積.

分析 (1)推導出AD⊥DC,AD⊥DB,從而AD⊥平面BDC,由此能證明AD⊥BC.
(2)推導出BD⊥CD,四棱錐D-EFCB的體積VD-EFBC=VA-BDC-VE-AFD,由此能求出結果.

解答 證明:(1)∵在邊長為2的等邊三角形ABC中,D、E、F分別是BC、AB、AC的中點,
將△ABD沿AD折起,得到如圖二所示的三棱錐A-BCD,其中$BC=\sqrt{2}$.
∴AD⊥DC,AD⊥DB,
∵DB∩DC=D,∴AD⊥平面BDC
∵BC?平面 BDC,∴AD⊥BC.…(6分)
解:(2)在△BCD中,$BC=\sqrt{2}$,BD=CD=1,
∴BD2+CD2=BC2,∴BD⊥CD,
∵${V_{A-BDC}}=\frac{1}{3}•\frac{1}{2}•\sqrt{3}=\frac{{\sqrt{3}}}{6}$,${V_{E-AFD}}=\frac{{\sqrt{3}}}{4}•\frac{1}{2}•\frac{1}{3}=\frac{{\sqrt{3}}}{24}$,
∴四棱錐D-EFCB的體積${V_{D-EFBC}}={V_{A-BDC}}-{V_{E-AFD}}=\frac{{\sqrt{3}}}{6}-\frac{{\sqrt{3}}}{24}=\frac{{\sqrt{3}}}{8}$…(12分)

點評 本題考查線線垂直的證明,考查四棱錐的體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知定點F(1,0),定直線l:x=4,動點P到點F的距離與到直線l的距離之比等于$\frac{1}{2}$.
(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)設軌跡E與x軸負半軸交于點A,過點F作不與x軸重合的直線交軌跡E于兩點B、C,直線AB、AC分別交直線l于點M、N.試問:在x軸上是否存在定點Q,使得$\overrightarrow{QM}•\overrightarrow{QN}=0$?若存在,求出定點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=loga(ax+1)+bx(a>0且a≠1,b∈R)的圖象關于y軸對稱,且滿足f(0)=1.
(Ⅰ)求a、b的值;
(Ⅱ)若函數(shù)g(x)=f(x)-$\frac{1}{2}$x+c在[0,1]上存在零點,求實數(shù)c的取值范圍;
(Ⅲ)若函數(shù)φ(x)=2f(2x)+x+λ×2x-1(x∈-1,2]),是否存在實數(shù)λ使得φ(x)的最小值為-1,若存在,求出λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某校園內有一塊三角形綠地AEF(如圖1),其中AE=20m,AF=10m,∠EAF=$\frac{2π}{3}$,綠地內種植有一呈扇形AMN的花卉景觀,扇形AMN的兩邊分別落在AE和AF上,圓弧MN與EF相切于點P.
(1)求扇形花卉景觀的面積;
(2)學校計劃2017年年整治校園環(huán)境,為美觀起見,設計在原有綠地基礎上擴建成平行四邊形ABCD(如圖2),其中∠BAD=$\frac{2π}{3}$,并種植兩塊面積相同的扇形花卉景觀,兩扇形的邊都分別落在平行四邊形ABCD的邊上,圓弧都與BD相切,若扇形的半徑為8m,求平行四邊形ABCD綠地占地面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知向量$\overrightarrow{a}$與$\overrightarrow$滿足$\overrightarrow{a}$=(2,0),|$\overrightarrow$|=1,若|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$,則a與b的夾角是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=|lgx|,若0<a<b且f(a)=f(b),則a+2b的取值范圍為(3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,拋物線C:y2=2px的焦點為F,拋物線上一定點Q(1,2).
(1)求拋物線C的方程及準線l的方程;
(2)過焦點F的直線(不經過Q點)與拋物線交于A,B兩點,與準線l交于點M,記QA,QB,QM的斜率分別為k1,k2,k3,問是否存在常數(shù)λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和直線l:$\frac{x}{a}$-$\frac{y}$=1,橢圓的離心率e=$\frac{\sqrt{6}}{3}$,坐標原點到直線l的距離為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點E(-1,0),若直線m過點P(0,2)且與橢圓相交于C,D兩點,試判斷是否存在直線m,使以CD為直徑的圓過點E?若存在,求出直線m的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),點$A(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$在橢圓C上.
(1)求橢圓C的標準方程;
(2)是否存在斜率為2的直線l,使得當直線l與橢圓C有兩個不同交點M,N時,能在直線$y=\frac{5}{3}$上找到一點P,在橢圓C上找到一點Q,滿足$\overrightarrow{PM}=\overrightarrow{NQ}$?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案