A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{5}$ | D. | 4 |
分析 利用平面向量的數(shù)量積運算法則化簡已知的等式左邊,將cosA的值代入求出bc的值,由b、c及sinA的值,由余弦定理得到a2=b2+c2-2bccosA,利用完全平方公式變形后,將b+c,bc及cosA的值代入,開方即可求出a的值.
解答 解:∵cosA=$\frac{3}{5}$,且A為三角形的內角,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$,
又$\overrightarrow{AB}•\overrightarrow{AC}$=bccosA=3,∴bc=5,
∵b+c=6,bc=5,cosA=$\frac{3}{5}$,
∴由余弦定理得:a2=b2+c2-2bccosA=(b+c)2-2bc-2bccosA=36-10-6=20,
則a=2$\sqrt{5}$.
故選:C
點評 此題考查了同角三角函數(shù)間的基本關系,平面向量的數(shù)量積運算,余弦定理,完全平方公式的運用,以及三角形的面積公式,熟練掌握定理及公式是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈(-∞,0),x3+2x<0 | B. | ?x∈[0,+∞),x3+2x<0 | C. | ?x∈(-∞,0),x3+2x≥0 | D. | ?x∈[0,+∞),x3+2x≥0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (cosx)′=sinx | B. | (ax)′=axlna | C. | ${({sin\frac{π}{12}})^'}=cos\frac{π}{12}$ | D. | ${({{x^{-5}}})^'}=-\frac{1}{5}{x^{-6}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,-2016) | B. | (1,2016) | C. | (-1,2016) | D. | (1,-2016) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com