【題目】已知函數(shù).

1)求函數(shù)處的切線方程;

2)若方程在區(qū)間上有實根,求的值;

3)若不等式對任意正實數(shù)恒成立,求正整數(shù)的取值集合.

【答案】123.

【解析】

1)由的值可得切點坐標(biāo),求出的值,可得切線斜率,利用點斜式可得曲線在點處的切線方程;

2)令,方程有實根等價于有零點,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,然后根據(jù)零點存在性定理可判斷上分別存在一個零點,從而可得結(jié)果;

3)當(dāng)時,不等式成立恒成立,當(dāng)時,不等式化為,可得,當(dāng)時,不等式可化為,可得,結(jié)合(2)結(jié)合三種情況,從而可得結(jié)果.

1

又因為,所以切線方程為

2)記,方程有實根等價于有零點,

因為,當(dāng)時,;當(dāng)時,,

可知為極小值,又因為

所以,上存在一個零點,此時

又因為,

所以,上存在一個零點,此時

綜上,

3)不等式對任意正實數(shù)恒成立,

恒成立,

當(dāng)時,上式顯然成立,此時

當(dāng)時,上式化為,令

,由(2)可知,函數(shù)上單減,且存在一個零點,此時,即,

當(dāng)時,時,,

所以有極大值即最大值,于是

當(dāng)時,不等式化為,同理可得

綜上可知,,又因為

所以正整數(shù)的取值集合為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)經(jīng)過橢圓左焦點的直線(不經(jīng)過點且不與軸重合)與橢圓交于兩點,與直線:交于點,記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點在面對角線上運(yùn)動,則下列四個結(jié)論:

平面

④三棱錐的體積是定值

其中正確結(jié)論的個數(shù)有( )個.

A.1B.2

C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】時下,網(wǎng)校教學(xué)越來越受到廣大學(xué)生的喜愛,它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢,假設(shè)某網(wǎng)校的套題每日的銷售量(單位:千套)與銷售價格(單位:元/套)滿足的關(guān)系式,其中為常數(shù).已知銷售價格為4/套時,每日可售出套題21千套.

1)求的值;

2)假設(shè)網(wǎng)校的員工工資,辦公等所有開銷折合為每套題2元(只考慮銷售出的套數(shù)),試確定銷售價格的值,使網(wǎng)校每日銷售套題所獲得的利潤最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查居民對城市共享單車的滿意度,隨機(jī)選取了100人進(jìn)行問卷調(diào)查,并將問卷中的100人根據(jù)其滿意度評分值按照分為5組,得到號如圖所示的頻率分布直方圖.

(Ⅰ)求滿意度分值不低于70分的人數(shù).

(Ⅱ)已知滿意度分值在內(nèi)的男性與女性的比為3:4,為提高共享單車的滿意度,現(xiàn)從滿意度分值在的人中隨機(jī)抽取2人進(jìn)行座談,求這2人中只有一位男性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點,.

(1)證明:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標(biāo)值.若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.如圖是甲流水線樣本的頻數(shù)分布表和乙流水線樣本的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計乙流水線生產(chǎn)的產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);

(2)若將頻率視為概率,某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲、乙兩條流水線分別生產(chǎn)出不合格品約多少件?

(3)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩條流水線的選擇有關(guān)”?

甲流水線

乙流水線

合計

合格品

不合格品

合計

附:,其中.

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點在直線

)求的值和直線的直角坐標(biāo)方程及的參數(shù)方程;

)已知曲線的參數(shù)方程為,(為參數(shù)),直線交于兩點,求的值

查看答案和解析>>

同步練習(xí)冊答案