【題目】已知函數(shù).
(1)求函數(shù)在處的切線方程;
(2)若方程在區(qū)間上有實根,求的值;
(3)若不等式對任意正實數(shù)恒成立,求正整數(shù)的取值集合.
【答案】(1)(2)或(3).
【解析】
(1)由的值可得切點坐標(biāo),求出的值,可得切線斜率,利用點斜式可得曲線在點處的切線方程;
(2)令,方程有實根等價于有零點,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,然后根據(jù)零點存在性定理可判斷在和上分別存在一個零點,從而可得結(jié)果;
(3)當(dāng)時,不等式成立恒成立,當(dāng)時,不等式化為,可得,當(dāng)時,不等式可化為,可得,結(jié)合(2)結(jié)合三種情況,從而可得結(jié)果.
(1)
又因為,所以切線方程為
(2)記,方程有實根等價于有零點,
因為,當(dāng)時,;當(dāng)時,,
可知為極小值,又因為
所以,在上存在一個零點,此時
又因為,
所以,在上存在一個零點,此時
綜上,或
(3)不等式對任意正實數(shù)恒成立,
即,恒成立,
當(dāng)時,上式顯然成立,此時
當(dāng)時,上式化為,令,
則,由(2)可知,函數(shù)在上單減,且存在一個零點,此時,即,
當(dāng)時,;時,,
所以有極大值即最大值,于是
當(dāng)時,不等式化為,同理可得
綜上可知,,又因為,
所以正整數(shù)的取值集合為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過橢圓左焦點的直線(不經(jīng)過點且不與軸重合)與橢圓交于兩點,與直線:交于點,記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點在面對角線上運(yùn)動,則下列四個結(jié)論:
①
②
③平面
④三棱錐的體積是定值
其中正確結(jié)論的個數(shù)有( )個.
A.1B.2
C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】時下,網(wǎng)校教學(xué)越來越受到廣大學(xué)生的喜愛,它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢,假設(shè)某網(wǎng)校的套題每日的銷售量(單位:千套)與銷售價格(單位:元/套)滿足的關(guān)系式,其中,為常數(shù).已知銷售價格為4元/套時,每日可售出套題21千套.
(1)求的值;
(2)假設(shè)網(wǎng)校的員工工資,辦公等所有開銷折合為每套題2元(只考慮銷售出的套數(shù)),試確定銷售價格的值,使網(wǎng)校每日銷售套題所獲得的利潤最大.(保留1位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查居民對城市共享單車的滿意度,隨機(jī)選取了100人進(jìn)行問卷調(diào)查,并將問卷中的100人根據(jù)其滿意度評分值按照分為5組,得到號如圖所示的頻率分布直方圖.
(Ⅰ)求滿意度分值不低于70分的人數(shù).
(Ⅱ)已知滿意度分值在內(nèi)的男性與女性的比為3:4,為提高共享單車的滿意度,現(xiàn)從滿意度分值在的人中隨機(jī)抽取2人進(jìn)行座談,求這2人中只有一位男性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標(biāo)值.若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.如圖是甲流水線樣本的頻數(shù)分布表和乙流水線樣本的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計乙流水線生產(chǎn)的產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);
(2)若將頻率視為概率,某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲、乙兩條流水線分別生產(chǎn)出不合格品約多少件?
(3)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩條流水線的選擇有關(guān)”?
甲流水線 | 乙流水線 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附:,其中.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點在直線上
(Ⅰ)求的值和直線的直角坐標(biāo)方程及的參數(shù)方程;
(Ⅱ)已知曲線的參數(shù)方程為,(為參數(shù)),直線與交于兩點,求的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com