10.在[0,π]內(nèi)任取一個(gè)實(shí)數(shù)x,則sinx≤$\frac{1}{2}$的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 由題意,本題屬于幾何概型的運(yùn)用,已知區(qū)間的長(zhǎng)度為π,滿足sinx≤$\frac{1}{2}$,可得0≤x≤$\frac{π}{6}$或$\frac{5π}{6}≤x≤π$,區(qū)間長(zhǎng)度為$\frac{π}{3}$,由幾何概型公式解答.

解答 解:在區(qū)間[0,π]上,長(zhǎng)度為π,
當(dāng)x∈[0,π]時(shí),sinx≤$\frac{1}{2}$,可得0≤x≤$\frac{π}{6}$或$\frac{5π}{6}≤x≤π$,區(qū)間長(zhǎng)度為$\frac{π}{3}$
由幾何概型知,符合條件的概率為$\frac{\frac{π}{3}}{π}$=$\frac{1}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查解三角函數(shù)與幾何概型等知識(shí),關(guān)鍵是求出滿足條件的x區(qū)間長(zhǎng)度,利用幾何概型關(guān)系求之.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2lnx+x2-ax+2(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若存在x0∈(0,1],使得對(duì)任意的a∈[-2,0),不等式f(x0)>a2+3a+2-2mea(a+1)(其中e是自然對(duì)數(shù)的底數(shù))都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)f(x)=xex(e為自然對(duì)數(shù)的底數(shù)),g(x)=(x+1)2
(I)記$F(x)=\frac{f(x)}{g(x)}$,討論函F(x)單調(diào)性;
(II)令G(x)=af(x)+g(x)(a∈R),若函數(shù)G(x)有兩個(gè)零點(diǎn).
(i)求參數(shù)a的取值范圍;
(ii)設(shè)x1,x2是G(x)的兩個(gè)零點(diǎn),證明x1+x2+2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)M為邊長(zhǎng)為4的正方形ABCD的邊BC的中點(diǎn),N為正方形區(qū)域內(nèi)任意一點(diǎn)(含邊界),則$\overrightarrow{AM}$•$\overrightarrow{AN}$的最大值為( 。
A.32B.24C.20D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若實(shí)數(shù)a,b,c,d滿足$\frac{2{a}^{2}-lna}$=$\frac{3c-2}kdlsucp$=1,則(a-c)2+(b-d)2的最小值為$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若集合A={x|x2+3x-4>0},B={x|-2<x≤3},且M=A∩B,則有( 。
A.1∈MB.2∈MC.(∁RB)⊆AD.B⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn且滿足Sn=an+1(n∈N*),a1=1
(I)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)bn=log2(2an),求數(shù)列{an+bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合M={x|x2+x-2<0},N={x|log${\;}_{\frac{1}{2}}$x>-1},則M∩N=(  )
A.{x|-2<x<1}B.{x|0<x<1}C.{x|x>2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=|2x-1|+x+$\frac{1}{2}$的最小值為m.
(1)求m的值;
(2)已知a,b,c是正實(shí)數(shù),且a+b+c=m,求證:2(a3+b3+c3)≥ab+bc+ca-3abc.

查看答案和解析>>

同步練習(xí)冊(cè)答案