10.若a,b,c為實數(shù),且a>b,則下列不等式一定成立的是( 。
A.ac>bcB.a-b>b-cC.a+c>b+cD.a+c>b

分析 根據(jù)不等式的性質(zhì)以及特殊值法判斷即可.

解答 解:對于A,c=0時,不成立,
對于B,令a=1,b=0,c=-5,顯然不成立,
對于C,根據(jù)不等式出性質(zhì),成立,
對于D,若c<0,不一定成立,
故選:C.

點評 本題考查了不等式的性質(zhì),考查轉(zhuǎn)化思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a>b>0且c<d,下列不等式中成立的一個是( 。
A.a+c>b+dB.a-c>b-dC.ad<bcD.$\frac{a}{c}$>$\fracbhd48kf$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)等差數(shù)列{an}的前n項和為Sn,若首項a1=-3,公差d=2,Sk=5,則正整數(shù)k=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.一個口袋里裝有5個不同的紅球,7個不同的黑球,若取出一個紅球記2分,取出一個黑球記1分,現(xiàn)從口袋中取出6個球,使總分低于8分的取法種數(shù)為112(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知0≤θ≤$\frac{π}{2}$且sin(θ-$\frac{π}{6}$)=$\frac{1}{3}$,則cosθ=$\frac{2\sqrt{6}-1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若不等式|x+1|+|$\frac{1}{x}$-1|≤a有解,則實數(shù)a的取值范圍是( 。
A.a≥2B.a<2C.a≥1D.a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|y=log3(x-2)},B={x|x2-2x-3<0},則A∩B=( 。
A.(-2,3)B.(2,3)C.(-∞,-1)∪(3,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知:sin(α+$\frac{π}{4}$)+2sin(α-$\frac{π}{4}$)=0.
(1)求tanα的值;
(2)若tan($\frac{π}{4}$-β)=$\frac{1}{3}$,求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|x2-x-2≤0},集合B={x|m≤x<m+5,m∈R}.
(Ⅰ)若m=0,求A∩B.
(Ⅱ)若A∩B=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案