分析 由等差數列通項公式列出方程組,求出a1=-8,d=5,由此能求出數列{|an|}的前20項和.
解答 解:∵在公差大于1的等差數列{an}中,${a}_{1}^{2}$=64,a2+a3+a10=36,
∴$\left\{\begin{array}{l}{{{a}_{1}}^{2}=64}\\{{a}_{1}+d+{a}_{1}+2d+{a}_{1}+9d=36}\end{array}\right.$,
由d>1,解得a1=-8,d=5,
∴an=-8+(n-1)×5=5n-13,
由an=5n-13≥0,得n≥$\frac{13}{5}$,
∴a2=-8+5=-3<0,a3=-8+10=2>0,
∴數列{|an|}的前20項和:
S20=20×(-8)+$\frac{20×19}{2}×5$-2(-8-3)=812.
故答案為:812.
點評 本題考查數列的前20項的絕對值的求法,是中檔題,解題時要認真審題,注意等差數列的性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 等腰直角 | B. | 等邊 | C. | 銳角 | D. | 鈍角 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 6 | B. | -4 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ω=π,ϕ=$\frac{π}{6}$ | B. | $ω=2π,ϕ=\frac{π}{6}$ | C. | $ω=π,ϕ=\frac{π}{3}$ | D. | $ω=2π,ϕ=\frac{π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com