7.在△ABC中,角A,B,C的對邊分別為a,b,c,滿足(2b-a)cosC=ccosA.
(1)求角C的大。
(2)若c=2,且△ABC的面積為$\sqrt{3}$,求a,b的值.

分析 (1)由正弦定理和三角形的內(nèi)角和定理,即可求出C的值;
(2)利用△ABC的面積公式與余弦定理,即可求出a、b的值.

解答 解:(1)△ABC中,(2b-a)cosC=ccosA,
∴(2sinB-sinA)cosC=sinCcosA,
2sinBcosC=sinCcosA+sinAcosC,
2sinBcosC=sin(A+C),
又A+B+C=π,
∴2sinBcosC=sinB,
∴cosC=$\frac{1}{2}$,
又∵0<C<π,
∴C=$\frac{π}{3}$;
(2)∵c=2,C=$\frac{π}{3}$,
∴△ABC的面積為
S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$absin$\frac{π}{3}$=$\sqrt{3}$,
∴ab=4;①
又c2=a2+b2-2ab=22,②
由①、②組成方程組,解得a=2,b=2.

點評 本題考查了正弦定理、余弦定理與三角形的內(nèi)角和定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.過圓O外一點M(a,b)向圓O:x2+y2=r2引兩條切線,切點分別為A,B,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如表給出了某校500名12歲男孩中用隨機抽樣得出的120人的身高(單位cm).
 區(qū)間界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)
人數(shù)  510  22 3320 
 區(qū)間界限[146,150)[150,154)[154,158)   
 人數(shù) 11 5   
(1)列出樣本頻率分布表﹔
(2)畫出頻率分布直方圖﹔
(3)估計身高小于134cm的人數(shù)占總?cè)藬?shù)的百分比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,已知2sinBcosA=sin(A+C).
(1)求角A;
(2)若BC=2,△ABC的面積是$\sqrt{3}$,求AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)點(a,b)是區(qū)間$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$內(nèi)的隨機點,函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上的增函數(shù)的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)y=(x2+bx-4)logax(a>0且a≠1)若對任意x>0,恒有y≤0,則ba的取值范圍是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知向量$\overrightarrow{a}$=(2,-3),$\overrightarrow{MN}$與$\overrightarrow a$垂直,且|${\overrightarrow{MN}}$|=3$\sqrt{13}$,若點M的坐標(biāo)為(-3,2),求$\overrightarrow{ON}$(其中O為坐標(biāo)原點);
(2)設(shè)O為△ABC的外心(三角形外接圓的圓心),若$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\frac{1}{2}$|${\overrightarrow{AB}}$|2,求$\frac{{\left|{\overrightarrow{AC}}\right|}}{{\left|{\overrightarrow{AB}}\right|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若冪函數(shù)y=(k-2)xm-2015(k,m∈R)的圖象過點$(\frac{1}{2}\;,\;4)$,則k+m=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若不等式ax2+(a-5)x-2>0的解集為{x|-2<x<-$\frac{1}{4}$}
(1)解不等式2x2+(2-a)x-a>0
(2)求b為的范圍,使-ax2+bx+3≥0 的解集為R.

查看答案和解析>>

同步練習(xí)冊答案