9.對(duì)于函數(shù)f(x)=$\frac{x-1}{x+1}$,設(shè)函數(shù)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N+,n≥2),令集合M={x|f2016(x)=x,x∈R},則集合M為( 。
A.空集B.實(shí)數(shù)集C.單元素集D.二元素集

分析 先驗(yàn)證前幾個(gè)函數(shù)的表達(dá)式,找出同期再計(jì)算求值即可.

解答 解:由題設(shè)可知f2(x)=-$\frac{1}{x}$,f3(x)=-$\frac{x+1}{x-1}$,f4(x)=x,
f5(x)=$\frac{x-1}{x+1}$,f6(x)=-$\frac{1}{x}$,f7(x)=f3(x)=-$\frac{x+1}{x-1}$,
故從f5(x)開始組成了一個(gè)以f(x)為首項(xiàng),以周期為4重復(fù)出現(xiàn)一列代數(shù)式,
由2016=504×4,得f2016(x)=f4(x),故x=x,解得x∈R,
故選B.

點(diǎn)評(píng) 本題主要考查了函數(shù)的周期性,解題的關(guān)鍵是求函數(shù)的周期,同時(shí)考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則其表面積為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)計(jì)算${({\frac{1}{8}})^{-\frac{1}{3}}}+{({lg5})^0}+lg5+lg2$
(2)已知sinα=2cosα,求$\frac{2sinα-3cosα}{4sinα-9cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2-ax-lnx(a∈R).
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)$y=cos(2x-\frac{π}{4})$的對(duì)稱中心為($\frac{1}{2}kπ-\frac{π}{4},0$)(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=-2sin2x+2$\sqrt{3}$sinxcosx+1
(Ⅰ)求f(x)的最小正周期及對(duì)稱中心
(Ⅱ)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在非等腰三角形ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,若a,b,2c成等比數(shù)列,3a2,b2,3c2成等差數(shù)列,則cosB=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)A($\sqrt{3}$,2),B(0,3),C(0,1),則∠BAC=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右頂點(diǎn)分別為A1,A2,左右焦點(diǎn)分別為F1,F(xiàn)2,以F1F2為直徑的圓與雙曲線左支的一個(gè)交點(diǎn)為P,若以A1A2為直徑的圓與PF2相切,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案