3.若關(guān)于x的不等式5x2-a≤0的正整數(shù)解是1,2,3,則實(shí)數(shù)a的取值范圍是[45,80).

分析 根據(jù)不等式5x2-a≤0的正整數(shù)解,得出a>0,-$\sqrt{\frac{a}{5}}$≤x≤$\sqrt{\frac{a}{5}}$,解此不等式,求出a的取值范圍.

解答 解:關(guān)于x的不等式5x2-a≤0的正整數(shù)解是1,2,3,
∴a>0,
解不等式得x2≤$\frac{a}{5}$,
∴-$\sqrt{\frac{a}{5}}$≤x≤$\sqrt{\frac{a}{5}}$,
∴3≤$\sqrt{\frac{a}{5}}$<4,
∴9≤$\frac{a}{5}$<16,
即45≤a<80,
∴實(shí)數(shù)a的取值范圍是[45,80).
故答案為:[45,80).

點(diǎn)評(píng) 本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的首項(xiàng)是a1=1,an+1=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知$\overrightarrow m=(sinB,-2sinA)$,$\overrightarrow n=(sinB,sinC)$且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(Ⅰ)若a=b,求cosB;
(Ⅱ)若B=90°,且a=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)y=f(x)的圖象在點(diǎn)M(1,f(1))處的切線方程是y=$\frac{1}{2}$x+2,則f(1)+f′(1)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|x-2|+2|x+1|的最小值為m.
(1)求m的值;
(2)若a、b、c∈R,$\frac{{a}^{2}+^{2}}{2}$+c2=m,求c(a+b)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線$l:\sqrt{3}x-y+1=0$,方程x2+y2-2mx-2y+m+3=0表示圓.
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)m=-2時(shí),試判斷直線l與該圓的位置關(guān)系,若相交,求出相應(yīng)弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知(2x+$\frac{1}{\sqrt{x}}$)n展開式前三項(xiàng)的二項(xiàng)式系數(shù)和為22.
(Ⅰ)求n的值;
(Ⅱ) 求展開式中的常數(shù)項(xiàng);
( III)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}的通項(xiàng)公式an=nsin$\frac{nπ}{2}$,其前n項(xiàng)和為Sn,則S2016=-1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某班有學(xué)生45人,現(xiàn)用系統(tǒng)抽樣的方法,以座位號(hào)為編號(hào),現(xiàn)抽取一個(gè)容量為3的樣本,已知座位號(hào)分別為11,41的同學(xué)都在樣本中,那么樣本中另一位同學(xué)的座號(hào)應(yīng)該是26.

查看答案和解析>>

同步練習(xí)冊(cè)答案