15.已知(2x+$\frac{1}{\sqrt{x}}$)n展開式前三項的二項式系數(shù)和為22.
(Ⅰ)求n的值;
(Ⅱ) 求展開式中的常數(shù)項;
( III)求展開式中二項式系數(shù)最大的項.

分析 (Ⅰ)利用公式展開得前三項,系數(shù)和為22,即可求出n.
(Ⅱ)利用通項公式求解展開式中的常數(shù)項即可.
( III)利用通項公式求展開式中二項式系數(shù)最大的項.

解答 解:由題意,(2x+$\frac{1}{\sqrt{x}}$)n展開式前三項的二項式系數(shù)和為22.
(Ⅰ)二項式定理展開:前三項系數(shù)為:${C}_{n}^{0}{+C}_{n}^{1}+{C}_{n}^{2}$=1+n+$\frac{n(n-1)}{2}$=22,
解得:n=6或n=-7(舍去).
即n的值為6.
(Ⅱ)由通項公式${T_{k+1}}=C_6^k{({2x})^{6-k}}{({\frac{1}{{\sqrt{x}}}})^k}=C_6^k{2^{6-k}}{x^{6-\frac{3k}{2}}}$,
令$6-\frac{3k}{2}=0$,
可得:k=4.
∴展開式中的常數(shù)項為${T_{4+1}}=C_6^4{2^{6-4}}{x^{6-\frac{12}{2}}}$=60;
( III)∵n是偶數(shù),展開式共有7項.則第四項最大
∴展開式中二項式系數(shù)最大的項為${T_{3+1}}=C_6^3{2^{6-3}}{x^{6-\frac{9}{2}}}$=160${x}^{\frac{3}{2}}$.

點評 本題主要考查二項式定理的應用,通項公式的計算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.在長方體ABCD-A1B1C1D1中,AA1=AD=2,AB=4;
(1)求證:AD1⊥平面A1B1D;
(2)求BD與平面ACC1A1所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在△ABC中,內角A,B,C所對應的邊分別為a,b,c,若滿足${a^2}={(b-c)^2}+(2-\sqrt{3})bc$.
(Ⅰ)求角A的大。
(Ⅱ)若$\frac{1-cos2A}{1-cos2B}=\frac{a}$,且${S_{△ABC}}=\sqrt{3}$,求邊長c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若關于x的不等式5x2-a≤0的正整數(shù)解是1,2,3,則實數(shù)a的取值范圍是[45,80).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在正項等差數(shù)列{an}中有$\frac{{{a_{41}}+{a_{42}}+…+{a_{60}}}}{20}=\frac{{{a_1}+{a_2}+…+{a_{100}}}}{100}$成立,則在正項等比數(shù)列{bn}中,類似的結論為$\root{20}{_{41}•_{42}•_{43•}…•_{60}}=\root{100}{_{1}•_{2}•_{3}•…•_{100}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在四邊形ABCD中,AD∥BC,AB=$\sqrt{3}$,AD=1,A=$\frac{5π}{6}$
(1)求sin∠ADB
(2)若∠BDC=$\frac{2π}{3}$,求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.Sn為等差數(shù)列{an}的前n項和,且a1=1,S7=28.記bn=[lgan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1.
(Ⅰ)求b1,b11,b101;
(Ⅱ)求數(shù)列{bn}的前1 000項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知數(shù)列{an}的前n項和Sn=n2+2n,則a3+a4+a5+a6=40.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若0<a<1,0<b<1且a≠b,則在則a+b,$2\sqrt{ab}\;,\;{a^2}+{b^2}$和2ab中最大的是( 。
A.a+bB.2$\sqrt{ab}$C.a2+b2D.2ab

查看答案和解析>>

同步練習冊答案