分析 (Ⅰ)利用公式展開得前三項,系數(shù)和為22,即可求出n.
(Ⅱ)利用通項公式求解展開式中的常數(shù)項即可.
( III)利用通項公式求展開式中二項式系數(shù)最大的項.
解答 解:由題意,(2x+$\frac{1}{\sqrt{x}}$)n展開式前三項的二項式系數(shù)和為22.
(Ⅰ)二項式定理展開:前三項系數(shù)為:${C}_{n}^{0}{+C}_{n}^{1}+{C}_{n}^{2}$=1+n+$\frac{n(n-1)}{2}$=22,
解得:n=6或n=-7(舍去).
即n的值為6.
(Ⅱ)由通項公式${T_{k+1}}=C_6^k{({2x})^{6-k}}{({\frac{1}{{\sqrt{x}}}})^k}=C_6^k{2^{6-k}}{x^{6-\frac{3k}{2}}}$,
令$6-\frac{3k}{2}=0$,
可得:k=4.
∴展開式中的常數(shù)項為${T_{4+1}}=C_6^4{2^{6-4}}{x^{6-\frac{12}{2}}}$=60;
( III)∵n是偶數(shù),展開式共有7項.則第四項最大
∴展開式中二項式系數(shù)最大的項為${T_{3+1}}=C_6^3{2^{6-3}}{x^{6-\frac{9}{2}}}$=160${x}^{\frac{3}{2}}$.
點評 本題主要考查二項式定理的應用,通項公式的計算,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a+b | B. | 2$\sqrt{ab}$ | C. | a2+b2 | D. | 2ab |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com