分析 (1)先求出函數f(x)的定義域,再求出函數f(x)的導數,求函數f(x)的單調區(qū)間即可;
(2)根據函數的單調性求出函數的極值即可;
(3)所證不等式等價為$ln\frac{a}+\frac{a}-1≥0$,而f(x)=ln(1+x)+$\frac{1}{x+1}$-1,設t=x+1,則F(t)=lnt+$\frac{1}{t}$-1,由(1)結論可得,F(t)在(0,1)單調遞減,在(1,+∞)單調遞增,從而得到證明.
解答 解:(1)∵函數f(x)=ln(x+1)-$\frac{x}{x+1}$,
∴f′(x)=$\frac{1}{x+1}$-$\frac{1}{{(x+1)}^{2}}$,
由f′(x)>0⇒x>0;由f′(x)<0⇒-1<x<0;
∴f(x)的單調增區(qū)間(0,+∞),單調減區(qū)間(-1,0),
(2)由(1)得:f(x)有極小值,極小值是f(0)=0;
證明:(3)所證不等式等價為$ln\frac{a}+\frac{a}-1≥0$,
而$f(x)=ln(1+x)+\frac{1}{x+1}-1$,
設t=x+1,則$F(t)=lnt+\frac{1}{t}-1$,
由(1)結論可得,F(t)在(0,1)單調遞減,在(1,+∞)單調遞增,
由此F(t)min=F(1)=0,
所以F(t)≥F(1)=0,
即$F(t)=lnt+\frac{1}{t}-1≥0$,
記$t=\frac{a}$代入得證.
點評 本小題主要考查函數的單調性、極值問題,考查導數的應用以及不等式的證明,是一道中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①③ | B. | ①③④ | C. | ①②④ | D. | ③④ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com