7.已知f(x)=$\left\{\begin{array}{l}{kx+1,x≤0}\\{\frac{lnx}{x},x>0}\end{array}\right.$,則k>0時(shí),F(xiàn)(x)=f(f(x))+2的零點(diǎn)個(gè)數(shù)是( 。
A.4B.3C.2D.1

分析 通過討論x的范圍,結(jié)合對數(shù)函數(shù)的性質(zhì)判斷函數(shù)的零點(diǎn)個(gè)數(shù)即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{kx+1,x≤0}\\{\frac{lnx}{x},x>0}\end{array}\right.$,
(1)x>1時(shí),lnx>0,$\frac{lnx}{x}$>0,
∴y=f(f(x))+2=$\frac{ln\frac{lnx}{x}+2\frac{lnx}{x}}{\frac{lnx}{x}}$,此時(shí)的零點(diǎn)為x=1不滿足要求,
(2)0<x<1時(shí),lnx<0,
∴y=f(f(x))+1=klnx+1,
則k>0時(shí),有一個(gè)零點(diǎn),
(3)若x<0,kx+1≤0時(shí),y=f(f(x))+1=k2x+k+1,
則k>0時(shí),kx≤-1,k2x≤-k,可得k2x+k≤0,y有一個(gè)零點(diǎn),
(4)若x<0,kx+1>0時(shí),y=f(f(x))+1=ln(kx+1)+1,
則k>0時(shí),即y=0可得kx+1=$\frac{1}{e}$,y有一個(gè)零點(diǎn),
綜上可知,當(dāng)k>0時(shí),有3個(gè)零點(diǎn);
故選:B.

點(diǎn)評 本題考查了函數(shù)的零點(diǎn)問題,考查分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x>0,則x+$\frac{1}{x}$的最小值為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在三棱錐A-BCD中,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點(diǎn).若AC⊥BD,求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知點(diǎn)P為圓C:(x-1)2+(y-1)2=2上的動(dòng)點(diǎn),則P點(diǎn)到直線l:x-y+4=0的距離的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.兩圓x2+y2-1=0與x2+y2+3x+9y+2=0的公共弦長為( 。
A.$\frac{{3\sqrt{10}}}{10}$B.$\frac{{3\sqrt{10}}}{5}$C.$\frac{{\sqrt{10}}}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.f(x)是定義域上的增函數(shù),且f(x)>0,則下列函數(shù)為增函數(shù)的是( 。
A.y=1-f(x)B.$y=\frac{1}{f(x)}$C.y=f2(x)D.$y=-\sqrt{f(x)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)命題p:?n∈N*,2n≤2n+1,則¬p是( 。
A.?n∈N*,2n≤2n+1B.?n∈N*,2n>2n+1C.?n∈N*,2n=2n+1D.?n∈N*,2n≥2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用反證法證明“?x∈R,2x>0”,應(yīng)假設(shè)為( 。
A.?x0∈R,${2^{x_0}}$>0B.?x0∈R,${2^{x_0}}$<0C.?x∈R,2x≤0D.?x0∈R,${2^{x_0}}$≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若集合A={x|x=2k-1,k∈Z},B={x|x=4l±1,l∈Z},則( 。
A.A?BB.B?AC.A=BD.A∪B=Z

查看答案和解析>>

同步練習(xí)冊答案