A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 通過討論x的范圍,結(jié)合對數(shù)函數(shù)的性質(zhì)判斷函數(shù)的零點(diǎn)個(gè)數(shù)即可.
解答 解:∵f(x)=$\left\{\begin{array}{l}{kx+1,x≤0}\\{\frac{lnx}{x},x>0}\end{array}\right.$,
(1)x>1時(shí),lnx>0,$\frac{lnx}{x}$>0,
∴y=f(f(x))+2=$\frac{ln\frac{lnx}{x}+2\frac{lnx}{x}}{\frac{lnx}{x}}$,此時(shí)的零點(diǎn)為x=1不滿足要求,
(2)0<x<1時(shí),lnx<0,
∴y=f(f(x))+1=klnx+1,
則k>0時(shí),有一個(gè)零點(diǎn),
(3)若x<0,kx+1≤0時(shí),y=f(f(x))+1=k2x+k+1,
則k>0時(shí),kx≤-1,k2x≤-k,可得k2x+k≤0,y有一個(gè)零點(diǎn),
(4)若x<0,kx+1>0時(shí),y=f(f(x))+1=ln(kx+1)+1,
則k>0時(shí),即y=0可得kx+1=$\frac{1}{e}$,y有一個(gè)零點(diǎn),
綜上可知,當(dāng)k>0時(shí),有3個(gè)零點(diǎn);
故選:B.
點(diǎn)評 本題考查了函數(shù)的零點(diǎn)問題,考查分類討論思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3\sqrt{10}}}{10}$ | B. | $\frac{{3\sqrt{10}}}{5}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=1-f(x) | B. | $y=\frac{1}{f(x)}$ | C. | y=f2(x) | D. | $y=-\sqrt{f(x)}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?n∈N*,2n≤2n+1 | B. | ?n∈N*,2n>2n+1 | C. | ?n∈N*,2n=2n+1 | D. | ?n∈N*,2n≥2n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,${2^{x_0}}$>0 | B. | ?x0∈R,${2^{x_0}}$<0 | C. | ?x∈R,2x≤0 | D. | ?x0∈R,${2^{x_0}}$≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A?B | B. | B?A | C. | A=B | D. | A∪B=Z |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com