8.已知數(shù)列{an}滿足a1=1,其前n項(xiàng)和是Sn對任意正整數(shù)n,Sn=n2an,求此數(shù)列的通項(xiàng)公式.

分析 由Sn=n2an,可得n≥2時(shí),an=Sn-Sn-1,化為:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$.利用“累乘求積”方法即可得出.

解答 解:∵Sn=n2an,∴n≥2時(shí),an=Sn-Sn-1=n2an-(n-1)2an-1,化為:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$$•\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{3}}{{a}_{2}}$$•\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n-1}{n+1}$$•\frac{n-2}{n}$•$\frac{n-3}{n-1}$•…•$\frac{2}{4}$×$\frac{1}{3}$×1
=$\frac{2}{n(n+1)}$,n=1時(shí)也成立.
∴an=$\frac{2}{n(n+1)}$.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、“累乘求積”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.對于實(shí)數(shù)x,用[x]表示不超過x的最大整數(shù),如[0.41]=0,[7.28]=7,若n為正整數(shù),an=[$\frac{n}{3}$],Sn為數(shù)列{an}的前n項(xiàng)和,S3n=$\frac{3}{2}{n}^{2}-\frac{n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R),且A>0,ω>0,-π≤φ≤0.若f(x)的部分圖象如圖,且與y軸交點(diǎn)M(0,-$\frac{{\sqrt{2}}}{2}$),則ω+φ=-$\frac{5π}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一個(gè)容量為10的樣本數(shù)據(jù),分組后,組距與頻數(shù)如下:
組距(1,2](2,3](3,4](4,5](5,6](6,7]
頻數(shù)112312
則樣本落在區(qū)間(-∞,5]的頻率是$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.關(guān)于x的方程ax2+2x+1=0(a∈R)的根組成集合A.
(1)若A中有且只有一個(gè)元素,求a的值及集合A;
(2)若A中至多有一個(gè)元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n,a1=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an-3×5-n}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\frac{1+2+3+4+…+2n}{1+3+5+…+(2n-1)}$=$\frac{21}{10}$,則n的值是( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個(gè)袋中裝有8個(gè)乒乓球,其中6個(gè)黃色,2個(gè)白色,每次從袋中隨機(jī)摸出1個(gè)乒乓球,若摸到白球則停止,一共有3次摸球機(jī)會(huì).記X為停止摸球時(shí)的摸球次數(shù).
(1)若每次摸出乒乓球后不放回,則E(X)=$\frac{16}{7}$;
(2)若每次摸出乒乓球后放回,則D(X)=$\frac{183}{256}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{-1},x≤a}\\{{x}^{-2},x>a}\end{array}\right.$,其中a≠0,若存在實(shí)數(shù)b,使得函數(shù)g(x)=f(x)-b有兩個(gè)零點(diǎn),則a的取值范圍是( 。
A.(0,1)B.(-∞,0)∪(0,1)C.(-∞,0)∪(0,2)D.(-1,0)∪(0,1)

查看答案和解析>>

同步練習(xí)冊答案