若a=20.6,b=log22,c=ln0.6,則( 。
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:∵a=20.6>1,b=log22=1,c=ln0.6<0,
∴a>b>c.
故選:A.
點評:本題考查了對數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合{x|0<x<3且x∈Z}的子集個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E,F(xiàn),且EF=1,則下列結(jié)論中正確的有
 
.(填寫你認(rèn)為正確的序號)
①AC⊥面BEF;
②AF與BE相交;
③若P為AA1上的一動點,則三棱錐P-BEF的體積為定值;
④在空間與直線DD1,AC,B1C1都相交的直線只有1條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖1正方形ABCD的邊長為1,AC∩BD=O.將正方形ABCD沿對角線BD折起,使AC=1,得到三棱錐A-BCD,如圖2所示.
(1)求證:AO⊥平面BCD;
(2)求三棱錐A-OCD的體積;
(3)求二面角A-BC-D的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)x、y滿足不等式組
2x-y≥0
x+y-2≥0
6x+3y≤18
,且z=ax+y(a>0)取最小值的最優(yōu)解有無窮多個,則實數(shù)a的取值是( 。
A、-
4
5
B、1
C、2
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,且短軸長為2
3
,F(xiàn)1,F(xiàn)2是橢圓的左右兩個焦點,若直線l過F2,且傾斜角為45°,交橢圓于A,B兩點.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)求△ABF1的周長與面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|3≤x<7},B={x|2<x<7}.求:
(1)A∪B;        
(2)(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+a|x-1|,a為常數(shù).
(1)當(dāng)a=2時,求函數(shù)f(x)在[0,2]上的最小值和最大值;
(2)若函數(shù)f(x)在[0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案