9.等差數(shù)列{an}和等比數(shù)列{bn}中,Sn為數(shù)列{an}的前n項和,Tn為數(shù)列{bn}的前n項和,若a1=2,S3=12,T2=3,T4=15
(1)求a6
(2)求T6

分析 (1)利用等差數(shù)列的通項公式與求和公式即可得出.
(2)利用等比數(shù)列的通項公式與求和公式即可得出.

解答 解:(1)設(shè)數(shù)列{an}的公差為d,由題意可知${S_3}=3{a_1}+\frac{3×2}{2}d$,代入數(shù)據(jù)解之得,d=2,(3分)
由等差數(shù)列通項公式an=a1+(n-1)d,可得a6=2+2×5=12.(3分).
(2)設(shè)等比數(shù)列{bn}的公比為q,首項為b1.由題意可知$\left\{{\begin{array}{l}{{T_2}=\frac{{{b_1}(1-{q^2})}}{1-q}}\\{{T_4}=\frac{{{b_1}(1-{q^4})}}{1-q}}\end{array}}\right.$,
代入數(shù)據(jù)解之得q=2,b1=1或q=-2,b1=-3(3分),
∴q=2,b1=1時,T6=$\frac{{2}^{6}-1}{2-1}$=63;
q=-2,b1=-3時,T6=$\frac{-3[1-(-2)^{6}]}{1-(-2)}$=63.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三  年級一班至六班進(jìn)行了“本屆奧運會中國隊表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學(xué)生中隨機抽取了50人,具體的調(diào)查結(jié)果如表:
 班號 一班 二班三班  四班 五班 六班
 頻數(shù) 5 9 11 9 7 9
 滿意人數(shù) 4 7 8 5 6 6
(1)在高三年級全體學(xué)生中隨機抽取一名學(xué)生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對象中隨機選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax-lnx.
(1)過原點O作曲線y=f(x)的切線,求切點的橫坐標(biāo);
(2)對?x∈[1,+∞),不等式f(x)≥a(2x-x2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-x2+ax,曲線y=f(x)在點(0,f(0))處的切線與x軸平行.
(Ⅰ)求a的值;
(Ⅱ)若g(x)=ex-2x-1,求函數(shù)g(x)的最小值;
(Ⅲ)求證:存在c<0,當(dāng)x>c時,f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.計算下列各式:
(1)已知tanα=2,求$\frac{cosα+sinα}{cosα-sinα}$值;
(2)化簡f(α)=$\frac{{sin(α-\frac{π}{2})cos(\frac{π}{2}-α)tan(π-α)}}{tan(π+α)sin(π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(n)=k,(n∈N*),k是$\sqrt{2}$小數(shù)點后第n位數(shù)字,$\sqrt{2}$=1.414213562…,則$\underbrace{f\{f…f[{f(8)}]\}}_{2016個f}$=( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,求a,b的值;
(2)當(dāng)a2=4b時,求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.圓的一條直徑的兩個端點是(2,0),(0,2)時,則此圓的方程是( 。
A.(x-2)2+(y-1)2=1B.(x-1)2+(y-1)2=2C.(x-1)2+(y+1)2=9D.(x+2)2+(y+1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,∠ABC=90°,AB∥CD,AB=AD=2,CD=1,側(cè)面PAD⊥底面ABCD,且△PAD是以AD為底的等腰三角形
(1)證明:AD⊥PB;
(2)若三棱錐C-PBD的體積等于$\frac{1}{2}$,問:是否存在過點C的平面CMN,分別交PB、AB于點M,N,使得平面CMN∥平面PAD?若存在,求出△CMN的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案