分析 (1)利用已知條件以及同角三角函數的基本關系求得$\frac{cosα+sinα}{cosα-sinα}$值.
(2)利用誘導公式求得要求式子的值.
解答 解:(1)∵已知tanα=2,∴$\frac{cosα+sinα}{cosα-sinα}$=$\frac{1+tanα}{1-tanα}$=$\frac{1+2}{1-2}=-3$.
(2)f(α)=$\frac{{sin(α-\frac{π}{2})cos(\frac{π}{2}-α)tan(π-α)}}{tan(π+α)sin(π+α)}$=$\frac{{-sin(\frac{π}{2}-α)•sinα•(-tanα)}}{tanα•(-sinα)}$=$-sin(\frac{π}{2}-α)$=-cosα.
點評 本題主要考查同角三角函數的基本關系、誘導公式的應用,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | (-∞,18) | B. | (-∞,18] | C. | [18,+∞) | D. | (18,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | $\frac{7}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | -$\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com