【題目】已知拋物線C:的焦點為F,Q是拋物線上的一點,.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點作直線l與拋物線C交于M,N兩點,在x軸上是否存在一點A,使得x軸平分?若存在,求出點A的坐標(biāo),若不存在,請說明理由.
【答案】(Ⅰ)(Ⅱ)存在,
【解析】
(Ⅰ)由題意可知,設(shè),由即可求出p的值,從而得到拋物線C的方程;
(Ⅱ)對直線l的斜率分情況討論,當(dāng)直線l的斜率不存在時,由拋物線的對稱性可知x軸上任意一點A(不與點重合),都可使得x軸平分;
當(dāng)直線l的斜率存在時,由題意可得,設(shè)直線l的方程為:與拋物線方程聯(lián)立,利用韋達定理代入得,解得,故點.
解:(Ⅰ)由題意可知,,
∵點Q在物線C:上,∴設(shè),
,
∴,解得,
∴拋物線C的方程為:;
(Ⅱ)①當(dāng)直線l的斜率不存在時,由拋物線的對稱性可知x軸上任意一點A(不與點重合),都可使得x軸平分;
②當(dāng)直線l的斜率存在時,設(shè)直線l的方程為:,
設(shè),,
聯(lián)立方程,
消去y得:,
,(*),
假設(shè)在x軸上是否存在一點,使得x軸平分,
∴,
∴,
∴,
又,,
∴,
把(*)式代入上式化簡得:,
∴,
∴點,
綜上所求,在x軸上存在一點,使得x軸平分.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),既存在極大值,又存在極小值.
(1)求實數(shù)的取值范圍;
(2)當(dāng)時,,分別為的極大值點和極小值點.且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右頂點分別為C、D,且過點,P是橢圓上異于C、D的任意一點,直線PC,PD的斜率之積為.
(1)求橢圓的方程;
(2)O為坐標(biāo)原點,設(shè)直線CP交定直線x = m于點M,當(dāng)m為何值時,為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域上的最大值為,求實數(shù)的值;
(2)設(shè)函數(shù),當(dāng)時,對任意的恒成立,求滿足條件的實數(shù)的最小整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),為函數(shù)的兩個極值點,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一、高二年級的全體學(xué)生都參加了體質(zhì)健康測試,測試成績滿分為分,規(guī)定測試成績在之間為“體質(zhì)優(yōu)秀”,在之間為“體質(zhì)良好”,在之間為“體質(zhì)合格”,在之間為“體質(zhì)不合格”.現(xiàn)從這兩個年級中各隨機抽取名學(xué)生,測試成績?nèi)缦拢?/span>
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
高一年級 | 60 | 85 | 80 | 65 | 90 | 91 | 75 |
高二年級 | 79 | 85 | 91 | 75 | 60 |
其中是正整數(shù).
(1)若該校高一年級有學(xué)生,試估計高一年級“體質(zhì)優(yōu)秀”的學(xué)生人數(shù);
(2)若從高一年級抽取的名學(xué)生中隨機抽取人,記為抽取的人中為“體質(zhì)良好”的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望;
(3)設(shè)兩個年級被抽取學(xué)生的測試成績的平均數(shù)相等,當(dāng)高二年級被抽取學(xué)生的測試成績的方差最小時,寫出的值.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖,給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的值為( )
A.80B.192C.448D.36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,國家相關(guān)政策大力鼓勵創(chuàng)新創(chuàng)業(yè)種植業(yè)戶小李便是受益者之一,自從2017年畢業(yè)以來,其通過自主創(chuàng)業(yè)而種植的某種農(nóng)產(chǎn)品廣受市場青睞,他的種植基地也相應(yīng)地新增加了一個平時小李便帶著部分員工往返于新舊基地之間進行科學(xué)管理和經(jīng)驗交流,新舊基地之間開車單程所需時間為,由于不同時間段車流量的影響,現(xiàn)對50名員工往返新舊基地之間的用時情況進行統(tǒng)計,結(jié)果如下:
(分鐘) | 30 | 35 | 40 | 45 | 50 |
頻數(shù)(人) | 10 | 20 | 10 | 5 | 5 |
(1)若有50名員工參與調(diào)查,現(xiàn)從單程時間在35分鐘,40分鐘,45分鐘的人員中按分層抽樣的方法抽取7人,再從這7人中隨機抽取3人進行座談,用表示抽取的3人中時間在40分鐘的人數(shù),求的分布列和數(shù)學(xué)期望;
(2)某天,小李需要從舊基地駕車趕往新基地召開一個20分鐘的緊急會議,結(jié)束后立即返回舊基地.(以50名員工往返新舊基地之間的用時的頻率作為用時發(fā)生的概率)
①求小李從離開舊基地到返回舊基地共用時間不超過110分鐘的概率;
②若用隨機抽樣的方法從舊基地抽取8名骨干員工陪同小李前往新基地參加此次會議,其中有名員工從離開舊基地到返回舊基地共用時間不超過110分鐘,求隨機變量的方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù),函數(shù)
(1)當(dāng)函數(shù)在時為減函數(shù),求a的范圍;
(2)若a=e(e為自然對數(shù)的底數(shù));
①求函數(shù)g(x)的單調(diào)區(qū)間;
②證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com