【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn),當圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設計的程序框圖,則輸出的n值為 (參考數(shù)據(jù):,,)
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】下面六個命題中,其中正確的命題序號為______________.
①函數(shù)的最小正周期為;
②函數(shù)的圖象關(guān)于點對稱;
③函數(shù)的圖象關(guān)于直線對稱;
④函數(shù),的單調(diào)遞減區(qū)間為;
⑤將函數(shù)向右平移()個單位所得圖象關(guān)于軸對稱,則的最小正值為;
⑥關(guān)于的方程的兩個實根中,一個根比1大,一個根比-1小,則的取值范圍為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校初一年級全年級共有名學生,為了拓展學生的知識面,在放寒假時要求學生在假期期間進行廣泛的閱讀,開學后老師對全年級學生的閱讀量進行了問卷調(diào)查,得到了如圖所示的頻率分布直方圖(部分已被損毀),統(tǒng)計人員記得根據(jù)頻率直方圖計算出學生的平均閱讀量為萬字.根據(jù)閱讀量分組按分層抽樣的方法從全年級人中抽出人來作進一步調(diào)查.
(1)從抽出的人中選出人來擔任正副組長,求這兩個組長中至少有一人的閱讀量少于萬字的概率;
(2)為進一步了解廣泛閱讀對今后學習的影響,現(xiàn)從抽出的人中挑選出閱讀量低于萬字和高于萬字的同學,再從中隨機選出人來長期跟蹤調(diào)查,求這人中來自閱讀量為萬到萬字的人數(shù)的概率分布列和期望值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”的贊成人數(shù)如下表:
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“使用微信交流”的態(tài)度與人的年齡有關(guān).
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成的人數(shù) | |||
不贊成的人數(shù) | |||
合計 |
(2)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考公式:,.
參考數(shù)據(jù):
0.100 | ||||
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】美國對中國芯片的技術(shù)封鎖激發(fā)了中國“芯”的研究熱潮.某公司研發(fā)的,兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費資金千萬元,現(xiàn)在準備投入資金進行生產(chǎn).經(jīng)市場調(diào)查與預測,生產(chǎn)芯片的毛收入與投入的資金成正比,已知每投入千萬元,公司獲得毛收入千萬元;生產(chǎn)芯片的毛收入(千萬元)與投入的資金(千萬元)的函數(shù)關(guān)系為,其圖像如圖所示.
(1)試分別求出生產(chǎn),兩種芯片的毛收入(千萬元)與投入資金(千萬元)的函數(shù)關(guān)系式;
(2)現(xiàn)在公司準備投入億元資金同時生產(chǎn),兩種芯片,求可以獲得的最大利潤是多少.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD=2DE=2AD=2AB=4,AC=,.
(1)求證:AB平面ADE;
(2)求平面EBC與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的焦點分別為,,離心率,過左焦點的直線與橢圓交于,兩點,,且.
(1)求橢圓的標準方程;
(2)過點的直線與橢圓有兩個不同的交點,,且點在點,之間,試求和面積之比的取值范圍(其中為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD=2DE=2AD=2AB=4,AC=,.
(1)求證:AB平面ADE;
(2)求平面EBC與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com