【題目】已知函數(shù)

(1)求函數(shù)的定義域;

(2)判定函數(shù)的單調性,并證明你的結論;

(3)若當時, 恒成立,求正整數(shù)的最大值.

【答案】(1) (2)減函數(shù) (3)3

【解析】試題分析:

(1)結合函數(shù)的解析式可得函數(shù)的定義域為 ;

(2)對函數(shù) 求導,結合題意和導函數(shù)的解析式可得=- <0,所以函數(shù)f(x)在區(qū)間(-1,0)上是減函數(shù).

(3)首先由不等式的性質可得k的最大值不大于3,然后結合導函數(shù)的性質可得滿足題意,即正整數(shù)的最大值是3.

試題解析:

解:(Ⅰ)函數(shù)的定義域為

(Ⅱ)=- 設,

g(x)在(-1,0)上是減函數(shù),而g(x)>g(0)=1>0,

=- <0,

所以函數(shù)f(x)在區(qū)間(-1,0)上是減函數(shù). 

III)當>0時,f)>恒成立, 令=1有<2

k為正整數(shù).∴k的最大值不大于3.        

下面證明當=3時,f)>>0)恒成立.

即證當>0時, +1-2>0恒成立.     

)= +1-2,則-1,

>-1時, >0;當0<-1時, <0.

∴當-1時,)取得最小值(e-1)=3->0.

∴當>0時, +1-2>0恒成立.

因此正整數(shù)k的最大值為3.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足下列條件:在定義域內存在,使得成立,則稱函數(shù)具有性質;反之,若不存在,則稱函數(shù)不具有性質.

(Ⅰ)證明:函數(shù)具有性質,并求出對應的的值;

(Ⅱ)試分別探究形如①)、②)、③)的函數(shù),是否一定具有性質?并加以證明.

(Ⅲ)已知函數(shù)具有性質,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設某校新、老校區(qū)之間開車單程所需時間為, 只與道路暢通狀況有關,對其容量為的樣本進行統(tǒng)計,結果如圖:

(分鐘)

25

30

35

40

頻數(shù)(次)

20

30

40

10

1)求的分布列與數(shù)學期望;

2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個50分鐘的講座,結束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時間不超過120分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓相交于兩點,與軸, 軸分別相交于點和點,且,點是點關于軸的對稱點, 的延長線交橢圓于點,過點分別做軸的垂線,垂足分別為.

(1)橢圓的左、右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上,求橢圓的方程;

(2)當時,若點平分線段,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,我海監(jiān)船在島海域例行維權巡航,某時刻航行至處,此時測得其東北方向與它相距海里的處有一外國船只,且島位于海監(jiān)船正東海里處.

1)求此時該外國船只與島的距離;

2)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方向航行,為了將該船攔截在離海里處,不讓其進入海里內的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某土特產(chǎn)銷售總公司為了解其經(jīng)營狀況,調查了其下屬各分公司月銷售額和利潤,得到數(shù)據(jù)如下表:

分公司名稱

雅雨

雅魚

雅女

雅竹

雅茶

月銷售額(萬元)

3

5

6

7

9

月利潤額(萬元)

2

3

3

4

5

在統(tǒng)計中發(fā)現(xiàn)月銷售額和月利潤額具有線性相關關系.

(1)根據(jù)如下的參考公式與參考數(shù)據(jù),求月利潤額與月銷售額之間的線性回歸方程;

(2)若該總公司還有一個分公司“雅果”月銷售額為10萬元,試估計它的月利潤額是多少?

(參考公式: , ,其中: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求函數(shù)的單調區(qū)間;

)當,時,證明:(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形均為平行四邊形,點在平面內的射影恰好為點,以為直徑的圓經(jīng)過點, , 的中點為 的中點為,且

(Ⅰ)求證:平面平面;

(Ⅱ)求幾何體的體積. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布

(1)假設生產(chǎn)狀態(tài)正常,記X表示一天內抽取的16個零件中其尺寸在

之外的零件數(shù),求;

(2)一天內抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.

下面是檢驗員在一天內抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得 ,其中為抽取的第個零件的尺寸,

用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計值,利用估計值判斷是否需對當天的生產(chǎn)過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(精確到0.01).

附:若隨機變量服從正態(tài)分布,則,

查看答案和解析>>

同步練習冊答案