2.在△ABC中,角A,B,C所對的邊分別為a,b,c,且b2+c2=a2+bc.
(1)求角A的大;
(2)若三角形的面積為$\sqrt{3}$,且b+c=5,求b和c的值.

分析 (1)由b2+c2=a2+bc,利用余弦定理可得cosA=$\frac{1}{2}$,即可得出.
(2)S△ABC=$\frac{1}{2}bc$sin$\frac{π}{3}$=$\sqrt{3}$,化為:bc=4,又b+c=5,聯(lián)立解出b,c.

解答 解:(1)∵b2+c2=a2+bc,∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),∴A=$\frac{π}{3}$.
(2)S△ABC=$\frac{1}{2}bc$sin$\frac{π}{3}$=$\sqrt{3}$,化為bc=4,
又b+c=5,解得b=4,c=1或b=1,c=4.

點評 本題考查了余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.關(guān)于x的二次方程x2+ax+a2-4=0的兩根異號,則a的取值范圍是(-2,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(Ⅰ)若a,b,均為正數(shù),且a+b=1.證明:(1+$\frac{1}{a}$)(1+$\frac{1}$)≥9;
(Ⅱ)若不等式|x+3|-|x-a|≥2的解集為{x|x≥1},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,如果輸入的n是6,那么輸出的p是( 。
A.12B.42C.30D.40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)f(x)=(x-2)(x+a)是偶函數(shù),則實數(shù)a的值為(  )
A.2B.0C.-2D.±2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知圓C的半徑為2,圓心在x軸的正半軸上,直線3x+4y+4=0與圓C相切,則圓C的方程為( 。
A.(x-1)2+y2=4B.(x-2)2+y2=4C.(x+1)2+y2=4D.(x+2)2+y2=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.定義$(\begin{array}{l}{{x}_{n+1}}\\{{y}_{n+1}}\end{array})$=$(\begin{array}{l}{1}&{-1}\\{1}&{1}\end{array})$$(\begin{array}{l}{{x}_{n}}\\{{y}_{n}}\end{array})$(n∈N*)為向量$\overrightarrow{O{P}_{n}}$=(xn,yn)到向量$\overrightarrow{O{P}_{n+1}}$=(xn+1,yn+1)的一個矩陣變換,設向量$\overrightarrow{O{P}_{1}}$=(cosα,sinα),O為坐標原點,則|$\overrightarrow{O{P}_{n}}$|=($\sqrt{2}$)n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設隨機變量X~B ( n,p ),且EX=6,DX=3,則P(X=1)的值為( 。
A.$\frac{3}{4}$B.$\frac{1}{16}$C.$\frac{3}{1024}$D.$\frac{1}{256}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.圖(1)、圖(2)、圖(3)、圖(4)分別包含1、5、13和25個互不重疊的單位正方形,按同樣的方式構(gòu)造圖形,則第n個圖包含(  )個互不重疊的單位正方形.
A.n2-2n+1B.2n2-2n+1C.2n2+2D.2n2-n+1

查看答案和解析>>

同步練習冊答案