【題目】已知函數(shù),
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的方程在區(qū)間上有兩個不等的根,求實數(shù)的取值范圍;
(3)若存在,當時,恒有,求實數(shù)的取值范圍.
【答案】(1);(2) ;(3)
【解析】
試題分析:(1)由題已知函數(shù),求函數(shù)的單調(diào)區(qū)間,可按照先求導(dǎo),再令,又解出對應(yīng)的不等式的解集,可得;(注意定義域優(yōu)先)
(2)由在區(qū)間上有兩個根,可通過構(gòu)造函數(shù),轉(zhuǎn)而利用導(dǎo)數(shù)考察函數(shù)的單調(diào)性和極值,再結(jié)合零點判定定理可建立關(guān)于不等式組,可求。
(3)由,都有為恒成立問題,可構(gòu)造函數(shù),又,只需函數(shù)在給定的區(qū)間上單調(diào)遞增即可,可利用導(dǎo)數(shù),讓導(dǎo)函數(shù)再區(qū)間上恒大于零可解出的取值范圍.
試題解析:解:(1)因為函數(shù)的定義域為,
且,
令,即解之得:
所以函數(shù)的單調(diào)遞減區(qū)間為
(2)令,
且定義域為
所以,令,,
列表如下:
1 | |||
+ | 0 | - | |
遞增 | 極大值 | 遞減 |
所以函數(shù)在區(qū)間先單調(diào)遞減后單調(diào)遞增,故要使有兩個不等的根,
只須即所以
(3)令,且
要使存在,當時,恒有,
則只須即可,
也就是存在,當時函數(shù)是單調(diào)遞增的,
又因為,只須在時成立,
即,解得,所以的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】某中學將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.
(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關(guān)?
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2(a+1)x+2alnx
(1)若a=2. 求f(x)的極值. (2)若a>0. 求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且直線是函數(shù)的一條切線.
(1)求的值;
(2)對任意的,都存在,使得,求的取值范圍;
(3)已知方程有兩個根,若,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處的切線方程為.
(1)求的值;
(2)求函數(shù)的極值.
(3)若在是單調(diào)函數(shù),求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求函數(shù)的極小值;
(Ⅱ)當時,過坐標原點作曲線的切線,設(shè)切點為,求實數(shù)的值;
(Ⅲ)設(shè)定義在上的函數(shù)在點處的切線方程為: ,當時,若在內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點”.當時,試問函數(shù)是否存在“轉(zhuǎn)點”.若存在,請求出“轉(zhuǎn)點”的橫坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,討論函數(shù)與的圖象的交點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的是
A. 若直線與平面平行,則與平面內(nèi)的任意一條直線都沒有公共點;
B. 若直線與平面平行,則與平面內(nèi)的任意一條直線都平行;
C. 若直線上有無數(shù)個點不在平面 內(nèi),則;
D. 如果兩條平行線中的一條與一個平面平行,那么另一條也與這個平面平行.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com