在橢圓>0,>0)外 ,則過作橢圓的兩條切線的切點為P1、P2,切點弦P1P2的直線方程是,那么類比雙曲線則有如下命題: 若在雙曲線>0,>0)外 ,則過作雙曲線的兩條切線的切點為P1、P2,切點弦P1P2的直線方程是           
橢圓與雙曲線標準方程的區(qū)別是加減號。所以雙曲線的切點弦P1P2的直線方程是.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點,使得總能被軸平分

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某公園內(nèi)有一橢圓形景觀水池,經(jīng)測量知,橢圓長軸長為20米,短軸長為16米,現(xiàn)以橢圓長軸所在直線為軸,短軸所在直線為軸,建立平面直角坐標系,如圖所示:

(1)為增加景觀效果,擬在水池內(nèi)選定兩點安裝水霧噴射口,要求橢圓上各點到這兩點距離之和都相等,請指出水霧噴射口的位置(用坐標表示),并求橢圓的方程。
(2)為了增加水池的觀賞性,擬劃出一個以橢圓的長軸頂點A、短軸頂點B及橢圓上某點M構(gòu)成的三角形區(qū)域進行夜景燈光布置,請確定點M的位置,使此三角形區(qū)域面積最大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分) 若橢圓過點,離心率為,⊙O的圓心在原點,直徑為橢圓的短軸,⊙M的方程為,過⊙M上任一點P作⊙O的切線PA、PB,切點為A、B.
(1) 求橢圓的方程;
(2)若直線PA與⊙M的另一交點為Q,當弦PQ最大時,求直線PA的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知M、N是橢圓上關(guān)于原點對稱的兩點,P是橢圓上任意一點,且直線PM、PN的斜率分別為k1、k2),若的最小值為1,則橢圓的離心率為           。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的離心率,則的值為 (       ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)橢圓以正方形的兩個頂點為焦點且過另外兩個頂點,那么此橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線與橢圓有相同的焦點,直線的一條漸近線,則雙曲線的方程是          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)設(shè)橢圓的離心率右焦點到直線的距離為坐標原點。

(Ⅰ)求橢圓的方程;
(Ⅱ)過點作兩條互相垂直的射線,與橢圓分別交于兩點,證明點到直線的距離為定值,并求弦長度的最小值.

查看答案和解析>>

同步練習冊答案