設動點P(x,y)(x≥0)到定點F的距離比到y(tǒng)軸的距離大.記點P的軌跡為曲線C.
(1)求點P的軌跡方程;
(2)設圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M在y軸上截得的弦,當M運動時弦長BD是否為定值?說明理由;
(3)過F作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形GRHS面積的最小值.

(1) y2=2x  (2) BD=2,即弦長BD為定值   (3)8

解析解:(1)由題意知,所求動點P(x,y)的軌跡為以F為焦點,直線l:x=-為準線的拋物線,其方程為y2=2x.
(2)是定值.解法如下:設圓心M,
半徑r=,
圓的方程為+(y-a)2=a2+,
令x=0,得B(0,1+a),D(0,-1+a),
∴BD=2,即弦長BD為定值.
(3)設過F的直線GH的方程為y=k,G(x1,y1),H(x2,y2),
得k2x2-(k2+2)x+=0,
∴x1+x2=1+,x1x2=,
∴|GH|=·=2+,
同理得|RS|=2+2k2.
S四邊形GRHS=(2+2k2)= 2≥8(當且僅當k=±1時取等號).
∴四邊形GRHS面積的最小值為8.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知是橢圓的兩個焦點,為坐標原點,點在橢圓上,且,⊙是以為直徑的圓,直線與⊙相切,并且與橢圓交于不同的兩點

(1)求橢圓的標準方程;
(2)當,且滿足時,求弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點、,若動點滿足
(1)求動點的軌跡曲線的方程;
(2)在曲線上求一點,使點到直線:的距離最小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,分別是橢圓的左、右焦點,過作傾斜角為的直線交橢圓,兩點, 到直線的距離為,連接橢圓的四個頂點得到的菱形面積為.
(1)求橢圓的方程;
(2)已知點,設是橢圓上的一點,過、兩點的直線軸于點,若, 求的取值范圍;
(3)作直線與橢圓交于不同的兩點,,其中點的坐標為,若點是線段垂直平分線上一點,且滿足,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,等邊三角形OAB的邊長為8,且其三個頂點均在拋物線E:x2=2py(p>0)上.

(1)求拋物線E的方程;
(2)設動直線l與拋物線E相切于點P,與直線y=-1相交于點Q,證明以PQ為直徑的圓恒過y軸上某定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓M=1(ab>0)的短半軸長b=1,且橢圓上一點與橢圓的兩個焦點構成的三角形的周長為6+4.
(1)求橢圓M的方程;
(2)設直線lxmyt與橢圓M交于AB兩點,若以AB為直徑的圓經過橢圓的右頂點C,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當點(0,2)到直線l2的距離最短時,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點P(4,-).
(1)求雙曲線的方程.
(2)若點M(3,m)在雙曲線上,求證:·=0.
(3)求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設拋物線的頂點在原點,準線方程為x=-.
(1)求拋物線的標準方程;
(2)若點P是拋物線上的動點,點P在y軸上的射影是Q,點M,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請說明理由;
(3)過拋物線焦點F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

同步練習冊答案