15.3n+C${\;}_{n}^{1}$3n-1+C${\;}_{n}^{2}$3n-3+…+1=(  ),(n∈N+)(  )
A.2nB.3nC.4nD.4n-1

分析 由二項(xiàng)式定理可得,3n+C${\;}_{n}^{1}$3n-1+C${\;}_{n}^{2}$3n-3+…+1=(3+1)n,即可得出結(jié)論.

解答 解:由二項(xiàng)式定理可得,3n+C${\;}_{n}^{1}$3n-1+C${\;}_{n}^{2}$3n-3+…+1=(3+1)n=4n,
故選C.

點(diǎn)評 本題考查二項(xiàng)式定理及其應(yīng)用,本題須逆用公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若有99%的把握說事件A與事件B有關(guān),那么具體算出的X2一定滿足(  )
A.X2>10.828B.X2<10.828C.X2>6.635D.X2<6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若函數(shù)$f(x)=\sqrt{5}sin(2x+ϕ),0<ϕ<π$對任意x滿足$f(\frac{π}{3}-x)=f(\frac{π}{3}+x)$.
(1)求φ的值;
(2)若$x∈[-\frac{π}{12},\frac{π}{2}]$,求f(x)的最值及其相應(yīng)x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線2x-y+a=0與3x+y-3=0交于第一象限,當(dāng)點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$表示的區(qū)域上運(yùn)動時,m=4x+3y的最大值為8,此時n=$\frac{y}{x+3}$的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知對任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x<0時,導(dǎo)函數(shù)分別滿足f′(x)>0,g′(x)<0,則x>0時,成立的是( 。
A.f′(x)>0,g′(x)<0B.f′(x)>0,g′(x)>0C.f′(x)<0,g′(x)<0D.f′(x)<0,g′(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在復(fù)平面內(nèi),復(fù)數(shù)i(i-1)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知a1=1,a2=-$\frac{1}{1+{a}_{1}}$,a3=-$\frac{1}{1+{a}_{2}}$,…,an+1=-$\frac{1}{1+{a}_{n}}$,….那么a2017=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲蓄款逐年增長,設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表:
年份20102011201220132014
時間代號t12345
儲蓄存款y(千億元)567810
(1)取y關(guān)于t的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t+a;
(2)用所求回歸方程預(yù)測該地區(qū)2015年(t=6)的人民幣儲蓄存款.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.當(dāng)實(shí)數(shù)m為何值時,復(fù)數(shù)z=lg(m2-4m-11)+(m2-2m-8)i為:
(1)實(shí)數(shù);
(2)純虛數(shù).

查看答案和解析>>

同步練習(xí)冊答案