3.直線2x-y+a=0與3x+y-3=0交于第一象限,當(dāng)點P(x,y)在不等式組$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$表示的區(qū)域上運動時,m=4x+3y的最大值為8,此時n=$\frac{y}{x+3}$的最大值為$\frac{3}{4}$.

分析 由題意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交點,利用當(dāng)點P(x,y)在不等式組$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的區(qū)域上運動時,m=4x+3y的最大值為8,求出a.然后利用線性規(guī)劃求解目標(biāo)函數(shù)的最值即可.

解答 解:由題意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交點($\frac{3-a}{5}$,$\frac{6+3a}{5}$),
當(dāng)點P(x,y)在不等式組$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的區(qū)域上運動時,m=4x+3y的最大值為8,
∴4×$\frac{3-a}{5}$+3×$\frac{6+3a}{5}$=8,∴a=2,
此時,直線2x-y+2=0與3x+y-3=0的交點坐標(biāo)為($\frac{1}{5}$,$\frac{12}{5}$),交于第一象限,
畫出約束條件$\left\{\begin{array}{l}{2x-y+2≥0}\\{3x+y-3≤0}\end{array}\right.$的可行域,目標(biāo)函數(shù)n=$\frac{y}{x+3}$的幾何意義是可行域內(nèi)的點與(-3,0)連線的斜率,
由可行域可知A與(-3,0)連線的斜率最大,由$\left\{\begin{array}{l}{2x-y+2=0}\\{3x+y-3=0}\end{array}\right.$,解得A($\frac{1}{5}$,$\frac{12}{5}$),
n=$\frac{y}{x+3}$的最大值為:$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點評 本題考查線性規(guī)劃知識,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.解關(guān)于x的不等式$\frac{x}{x-1}$≥2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.經(jīng)過點(2,4)的拋物線的標(biāo)準(zhǔn)方程為y2=8x或x2=y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ax3-(a+b)x2+bx+c,其中a>0,b、c∈R,若f′($\frac{1}{3}$)=0,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.給定平面內(nèi)三個向量$\overrightarrow a=(3,2),\overrightarrow b=(-1,2),\overrightarrow c=(4,1)$
(1)若($(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b+n\overrightarrow c)$,求實數(shù)k;
(2)求滿足$\overrightarrow a=m\overrightarrow b-n\overrightarrow c$的實數(shù)m,n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=$\frac{p}{1-cosθ}$(p>0)
(1)寫出直線l的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A,B兩點,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.3n+C${\;}_{n}^{1}$3n-1+C${\;}_{n}^{2}$3n-3+…+1=( 。,(n∈N+)( 。
A.2nB.3nC.4nD.4n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若曲線${C_1}:{x^2}+{y^2}-2x=0$與曲線${C_2}:m{x^2}-xy+mx=0$有三個不同的公共點,則實數(shù)m的取值范圍是( 。
A.$(0,\sqrt{3})$B.$(-\sqrt{3},0)∪(0,\sqrt{3})$C.$(0,\frac{{\sqrt{3}}}{3})$D.$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0
(1)求角B的大;
(2)若b=$\frac{1}{2}$,求△ABC的周長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案