A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{4π}{3}$ | D. | $\frac{16π}{3}$ |
分析 該幾何體是有一個側面PAC垂直于底面,高為 $\sqrt{3}$,底面是一個等腰直角三角形的三棱錐,這個幾何體的外接球的球心O在高線PD上,且是等邊三角形PAC的中心,由此能求出這個幾何體的外接球的半徑R,從而能求出這個幾何體的外接球的表面積.
解答 解:由已知中正視圖是一個正三角形,側視圖和俯視圖均為三角形,
可得該幾何體是有一個側面PAC垂直于底面,高為 $\sqrt{3}$,
底面是一個等腰直角三角形的三棱錐,如圖.
則這個幾何體的外接球的球心O在高線PD上,
且是等邊三角形PAC的中心,
這個幾何體的外接球的半徑R=$\frac{2}{3}$PD=$\frac{2\sqrt{3}}{3}$.
則這個幾何體的外接球的表面積為S=4πR2=4π×($\frac{2\sqrt{3}}{3}$)2=$\frac{16π}{3}$.
故選:D.
點評 本題考查幾何體的外接球的表面積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數學 來源: 題型:選擇題
A. | 12π | B. | 34π | C. | $\frac{17π}{4}$ | D. | 17π |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{16}{3}$ | B. | 32 | C. | $\frac{32}{3}$ | D. | $\frac{64}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a<c<b | B. | a<b<c | C. | b<a<c | D. | c<b<a |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com