3.已知cosα=-$\frac{4}{5}$,α∈($\frac{π}{2}$,π),則sinα的值為$\frac{3}{5}$,cos(α+$\frac{π}{4}$)的值為$-\frac{7\sqrt{2}}{10}$.

分析 由已知利用平方關(guān)系求得sinα,再展開兩角和的余弦求得cos(α+$\frac{π}{4}$)的值.

解答 解:∵cosα=-$\frac{4}{5}$,α∈($\frac{π}{2}$,π),
∴sinα=$\sqrt{1-co{s}^{2}α}=\sqrt{1-(-\frac{4}{5})^{2}}=\frac{3}{5}$;
cos(α+$\frac{π}{4}$)=cosαcos$\frac{π}{4}$-sinαsin$\frac{π}{4}$=$-\frac{4}{5}×\frac{\sqrt{2}}{2}-\frac{3}{5}×\frac{\sqrt{2}}{2}$=$-\frac{7\sqrt{2}}{10}$.
故答案為:$\frac{3}{5}$;$-\frac{7\sqrt{2}}{10}$.

點(diǎn)評(píng) 本題考查同角三角函數(shù)基本關(guān)系式,考查兩角和與差的余弦,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R),若存在實(shí)數(shù)a∈[1,2],對(duì)任意x∈[1,2],都有f(x)≤1,則7b+5c的最大值是-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\frac{e^x}{x}+a({x-lnx})$,在$x∈({\frac{1}{2},2})$上有三個(gè)不同的極值點(diǎn)(e為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)a的取值范圍是( 。
A.$({-e,-\sqrt{e}})$B.$({-2\sqrt{e},-e})$C.$({-\sqrt{e},0})$D.$[-e,-\frac{e}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,點(diǎn)E是邊長為2的正方形ABCD的CD邊中點(diǎn),若向正方形ABCD內(nèi)隨機(jī)投擲一點(diǎn),則所投點(diǎn)落在△ABE內(nèi)的概率為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一支田徑隊(duì)有男運(yùn)動(dòng)員56人,女運(yùn)動(dòng)員42人,用分層抽樣的方法從全體運(yùn)動(dòng)員中抽出一個(gè)容量為28的樣本,則從中抽取的男運(yùn)動(dòng)員的人數(shù)為( 。
A.8B.12C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某公司利潤y與銷售總額x(單位:千萬元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x10151720252832
y11.31.822.62.73.3
(1)畫出散點(diǎn)圖;
(2)半y與x是否具有線性相關(guān)關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)已知tanα=$\frac{1}{3}$,求$\frac{1}{2sinαcosα+co{s}^{2}α}$的值;
(2)化簡:$\frac{tan(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}{cos(-α-π)sin(-π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線的極坐標(biāo)方程是ρcosθ+ρsinθ-1=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,在曲線C:$\left\{\begin{array}{l}{x=-1+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))上求一點(diǎn),使它到直線的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正四棱錐P-ABCD的底面是邊長為2的正方形,側(cè)棱的長度均為$\sqrt{6}$,則該四棱錐的外接球體積為(  )
A.$\frac{3π}{2}$B.$\frac{4}{3}$πC.$\frac{9}{2}$πD.

查看答案和解析>>

同步練習(xí)冊(cè)答案