14.已知函數(shù)$f(x)=\frac{e^x}{x}+a({x-lnx})$,在$x∈({\frac{1}{2},2})$上有三個(gè)不同的極值點(diǎn)(e為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)a的取值范圍是( 。
A.$({-e,-\sqrt{e}})$B.$({-2\sqrt{e},-e})$C.$({-\sqrt{e},0})$D.$[-e,-\frac{e}{2})$

分析 問(wèn)題轉(zhuǎn)化為ex+ax=0在x∈($\frac{1}{2}$,2)有兩個(gè)不同的根,且x≠=e,令g(x)=a=-$\frac{{e}^{x}}{x}$,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:函數(shù)的定義域?yàn)閤∈(0,+∞),
f′(x)=$\frac{{(e}^{x}+ax)(x-1)}{{x}^{2}}$,
由條件可知f′(x)=0在x∈($\frac{1}{2}$,2)上有三個(gè)不同的根,
即ex+ax=0在x∈($\frac{1}{2}$,2)有兩個(gè)不同的根,
令g(x)=a=-$\frac{{e}^{x}}{x}$,g′(x)=-$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
x∈($\frac{1}{2}$,1)時(shí)單調(diào)遞增,x∈(1,2)時(shí)單調(diào)遞減,
∴g(x)max=g(1)=-e,g($\frac{1}{2}$)=-2$\sqrt{e}$,g(2)=-$\frac{1}{2}$e2,
∵-2$\sqrt{e}$-(-$\frac{1}{2}$e2)>0,
∴-2$\sqrt{e}$<a<-e,
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若復(fù)數(shù)$\frac{m+i}{1-i}$為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)m等于( 。
A.-1B.$-\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若不等式組$\left\{\begin{array}{l}x+2y-4≤0\\ ax+3y-4≥0\\ y≥0\end{array}\right.$表示的平面區(qū)域是等腰三角形區(qū)域,則實(shí)數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在矩形ABCD中,AB=1,BC=2,E為BC的中點(diǎn),F(xiàn)為線段AD上的一點(diǎn),且$AF=\frac{3}{2}$.現(xiàn)將四邊形ABEF沿直線EF翻折,使翻折后的二面角A'-EF-C的余弦值為$\frac{2}{3}$.

(1)求證:A'C⊥EF;
(2)求直線A'D與平面ECDF所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造一種標(biāo)準(zhǔn)量器商鞅銅方升,其三視圖如圖所示(單位:寸),若π取3,且圖中的x為1.6(寸).則其體積為(  )
A.0.4π+11.4立方寸B.13.8立方寸C.12.6立方寸D.16.2立方寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=|cx+a|+|cx-b|,g(x)=|x-2|+c.
(1)當(dāng)a=1,c=2,b=3時(shí),解方程f(x)-4=0;
(2)當(dāng)c=1,b=1時(shí),若對(duì)任意x1∈R,都存在x2∈R,使得g(x2)=f(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在等差數(shù)列{an}中,若a2=2,a1+a5=16,則公差d等于( 。
A.4B.$\frac{14}{3}$C.6D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知cosα=-$\frac{4}{5}$,α∈($\frac{π}{2}$,π),則sinα的值為$\frac{3}{5}$,cos(α+$\frac{π}{4}$)的值為$-\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知$\overrightarrow{OA}=({4,-3})$,將其繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°后又伸長(zhǎng)到原來(lái)的2倍得向量$\overrightarrow{OA'}$,則$\overrightarrow{OA'}$=(-4+3$\sqrt{3}$,3+4$\sqrt{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案