【題目】設函數(shù)fx)=lnax2+x+6).

1)若a=﹣1,求fx)的定義域,并討論fx)的單調性;

2)若函數(shù)fx)的定義域為R,求a的取值范圍.

【答案】(1)fx)的定義域是(﹣23);當﹣2x時,fx)單調遞增;當x3時,fx)單調遞減(2)a

【解析】

1)根據(jù)真數(shù)大于零求函數(shù)的定義域,再結合二次函數(shù)的單調性,即可求單調區(qū)間;

2)函數(shù)定義域為,轉化為真數(shù)大于零在上恒成立,即可求解.

1a=﹣1時,函數(shù)fx)=ln(﹣x2+x+6),

t=﹣x2+x+60,解得﹣2x3,

所以fx)的定義域是(﹣2,3);

當﹣2x時,二次函數(shù)t=﹣x2+x+6單調遞增,則fx)也單調遞增;

x3時,二次函數(shù)t=﹣x2+x+6單調遞減,則fx)也單調遞減;

fx)的單調遞增區(qū)間是,單調遞減區(qū)間是;

2)若函數(shù)fx)的定義域為R,則ax2+x+60恒成立,

,解得a

所以a的取值范圍是a

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出如下四個命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國2019年新年賀歲大片《流浪地球》自上映以來引發(fā)了社會的廣泛關注,受到了觀眾的普遍好評.假設男性觀眾認為《流浪地球》好看的概率為,女性觀眾認為《流浪地球》好看的概率為.某機構就《流浪地球》是否好看的問題隨機采訪了4名觀眾(其中2男2女).

(1)求這4名觀眾中女性認為好看的人數(shù)比男性認為好看的人數(shù)多的概率;

(2)設表示這4名觀眾中認為《流浪地球》好看的人數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在古代三國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“趙爽弦圖”,由四個全等的直角三角形圍成一個大正方形,中間空出一個小正方形(如圖陰影部分)。若直角三角形中較小的銳角為a,F(xiàn)向大正方形區(qū)城內隨機投擲一枚飛鏢,要使飛鏢落在小正方形內的概率為,則_____________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為增進市民的環(huán)保意識,某市有關部門面向全體市民進行了一次環(huán)保知識的微信問卷測試活動,每位市民僅有一次參與問卷測試機會.通過抽樣,得到參與問卷測試的1000人的得分數(shù)據(jù),制成頻率分布直方圖如圖所示.

(1)估計成績得分落在[86,100]中的概率.

(2)設這1000人得分的樣本平均值為

(i)求(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)

(ii)有關部門為參與此次活動的市民贈送20元或10元的隨機話費,每次獲贈20元或10元的隨機話費的概率分別為得分不低于的可獲贈2次隨機話費,得分低于的可獲贈1次隨機話費.求一位市民參與這次活動獲贈話費的平均估計值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)若,討論的單調性;

(2)求正實數(shù)的值,使得的一個極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩校分別有120名、100名學生參加了某培訓機構組織的自主招生培訓,考試結果出來以后,培訓機構為了進一步了解各校所培訓學生通過自主招生的情況,從甲校隨機抽取60人,從乙校隨機抽取50人進行分析,相關數(shù)據(jù)如下表.

(1)完成上面列聯(lián)表,并據(jù)此判斷是否有99%的把握認為自主招生通過情況與學生所在學校有關;

(2)現(xiàn)從甲、乙兩校通過的學生中采取分層抽樣的方法抽取5人,再從所抽取的5人種隨機抽取2人,求2人全部來自于乙校的概率.

參考公式:.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=ax2+bx+ca0),設函數(shù)y=[fx)]2+pfx)+q的零點所組成的集合為A,則以下集合不可能是A集合的序號為__

③{﹣2,38}

④{﹣4,﹣10,2}

⑤{13,5,7}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥平面ABCD,點E、F分別是ABPC的中點.

(1)求證:AB⊥平面PAD

(2)求證:EF//平面PAD

查看答案和解析>>

同步練習冊答案