在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=2,c=3,cosB=
1
4
,求cosC.
考點:兩角和與差的正弦函數(shù)
專題:解三角形
分析:先利用余弦定理求得b,再利用余弦定理求得cosC的值.
解答: 解:在△ABC中,由余弦定理,得b2=a2+c2-2ac•cosB=4+9-12×
1
4
=10,∴b=
10

∴cosC=
a2+b2-c2
2ab
=
4+10-9
2×2×
10
=
10
8
點評:本題主要考查余弦定理的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圓C:(x+1)2+(y-3)2=9上有兩點P,Q關于直線x+my+4=0對稱,則m等于( 。
A、-
5
3
B、
5
3
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:(0.25)-2+
8
27
1
3
+
1
8
-
2
3
-
1
32
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求曲線y=sinx(0≤x≤π)與直線y=
1
2
圍成的封閉圖形的面積?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2
3
,A、B兩點分別是橢圓E的右頂點、上頂點,且直線AB與圓O:x2+y2=
4
5
相切
(1)求橢圓E的方程;
(2)過原點O任作兩條相互垂直的射線交橢圓E于P、Q兩點,試判斷直線PQ是否總與圓O相切,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,且AB=AC=AA1=1.
(Ⅰ)求證:A1C⊥平面ABC;
(Ⅱ)求二面角B-AC1-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b,c∈R+,abc=1.求證
1
a3(b+c)
+
1
b3(c+a)
+
1
c3(a+b)
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)如圖,圓C:(x-2)2+y2=1,點Q是圓C上任意一點,M是線段OQ的中點.
(1)試求點M的軌跡方程.
(2)求軌跡所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
1
3
x與y=x-x2圍成封閉圖形的面積.

查看答案和解析>>

同步練習冊答案