分析 根據(jù)兩直線交點(diǎn)的求法得到點(diǎn)P的坐標(biāo),然后設(shè)直線l的方程為:y+4=k(x+5),(k≠0).分別與坐標(biāo)軸相交于(-$\frac{2}{k}$+1,0),(0,-k+2).可得$\frac{1}{2}$|(-$\frac{2}{k}$+1)(-k+2)|=$\frac{9}{2}$,解出k即可得出.
解答 解:依題意得:$\left\{\begin{array}{l}{2x-3y+4=0}\\{x+2y-5=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
故P(1,2).
設(shè)直線l的方程為:y-2=k(x-1),(k≠0).
分別與坐標(biāo)軸相交于(-$\frac{2}{k}$+1,0),(0,-k+2).
所以$\frac{1}{2}$|(-$\frac{2}{k}$+1)(-k+2)|=$\frac{9}{2}$,
整理,得:
(k+1)(k+4)=0或k2-13k+4=0.
由(k+1)(k+4)=0得到:k1=-1,k2=-4.
由k2-13k+4=0得到:k3=$\frac{13+3\sqrt{17}}{2}$,k4=$\frac{13-3\sqrt{17}}{2}$.
所以直線l的方程為y+x-3=0或y+4x-6=0或2y-(13+3$\sqrt{17}$)x+9+3$\sqrt{17}$=0或2y-(13-3$\sqrt{17}$)x+9-3$\sqrt{17}$=0.
點(diǎn)評(píng) 本題考查了直線的方程與交點(diǎn)、三角形的面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M∩N={0,2} | B. | M∪N={0,2} | C. | M⊆N | D. | M?N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>4 | B. | a>4>b | C. | 4<a<b | D. | a<4<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1<a<1 | B. | -1<a≤1 | C. | $-1<a<\frac{1}{3}$ | D. | $-1<a≤\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com