給出程序框圖,若輸入的x值為-5,則輸出的y的值是( 。
A、-2B、-1C、0D、1
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:根據(jù)框圖的流程,依次計(jì)算運(yùn)行的結(jié)果,直到不滿足條件(
1
2
)
x
>2時(shí),確定x值,計(jì)算y=log2x2的值.
解答: 解:由程序框圖得:若輸入的x值為-5時(shí),(
1
2
)
-5
=25=32>2,
程序繼續(xù)運(yùn)行x=-3,(
1
2
)
-3
=23=8>2,
程序繼續(xù)運(yùn)行x=-1,(
1
2
)
-1
=2,不滿足(
1
2
)
x
>2,
∴執(zhí)行y=log2x2=log21=0.
故選:C.
點(diǎn)評(píng):本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程依次運(yùn)行程序是解答此類問題的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)滿足f(2+x)=f(2-x)且圖象過(1,-3),最小值為-4,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人約定傍晚6時(shí)到7時(shí)之間在某處會(huì)面,并約定先到者應(yīng)等候另一人20分鐘,過時(shí)即可離去,則兩人在傍晚6時(shí)到7時(shí)之間會(huì)面的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1、2、3、4這四個(gè)數(shù)中一次隨機(jī)取兩個(gè),則取出的這兩數(shù)字之和為偶數(shù)的概率是( 。
A、
1
6
B、
1
3
C、
1
2
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i為虛數(shù)單位,復(fù)平面內(nèi)表示復(fù)數(shù)z=
1
i-1
的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知k∈[-2,2],則k的值使得過點(diǎn)A(0,2)可以作2條直線與圓x2+y2+kx-2y+
5
4
k=0
相切的概率為(  )
A、
1
2
B、
2
3
C、
3
4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a0=20.5,b=log32,c=log20.1,則( 。
A、a<b<c
B、c<a<b
C、c<b<a
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4(O為坐標(biāo)原點(diǎn)),點(diǎn)P(1,0),現(xiàn)向圓O內(nèi)隨機(jī)投一點(diǎn)A,則點(diǎn)P到直線OA的距離小于
1
2
的概率為( 。
A、
2
3
B、
1
2
C、
1
3
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|(a>0),且不等式f(x)≥|x+1|的解集為{x|x≤
1
2
}.
(Ⅰ)求a的值;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)+|2x+1|,若不等式|2m+n|+|m-n|≥|m|•g(x)對(duì)任意m,n∈R且m≠0恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案