12.如圖所示的算法流程圖中,輸出S的值為49.

分析 據(jù)程序框圖的流程,寫(xiě)出前8次循環(huán)得到的結(jié)果,直到滿足判斷框中的條件,結(jié)束循環(huán),輸出結(jié)果.

解答 解:通過(guò)第一次循環(huán)得到s=4,i=5,
通過(guò)第二次循環(huán)得到s=,9,i=6,
通過(guò)第三次循環(huán)得到s=15,i=7,
通過(guò)第四次循環(huán)得到s=22,i=8,
通過(guò)第五次循環(huán)得到s=30,i=9,
通過(guò)第六次循環(huán)得到s=39,i=10,
通過(guò)第七次循環(huán)得到s=49,i=11
通過(guò)第7次循環(huán)得到s=49,i=11此時(shí)滿足判斷框中的條件,
執(zhí)行輸出,s=49,
故答案為:49.

點(diǎn)評(píng) 解決程序框圖中的循環(huán)結(jié)構(gòu)時(shí),常采用寫(xiě)出前幾次循環(huán)的結(jié)果,找規(guī)律.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.8+$\frac{4}{3}$πB.8+$\frac{2}{3}$πC.4+$\frac{4π}{3}$D.4+$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折疊,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=$\sqrt{2}$.
(1)求證:DE⊥AC.
(2)求DE與平面BEC所成角的正切值.
(3)直線BE上是否存在一點(diǎn)M,使得CM∥平面ADE?若存在,求點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)A(x1,y1),B(x2,y2),C(x3,y3)是函數(shù)y=x3的圖象上任意三個(gè)不同的點(diǎn).求證:若A,B,C三點(diǎn)共線,則x1+x2+x3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則其體積為( 。
A.80B.160C.240D.480

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=ax-lnx,g(x)=ln(x2-2x+a),
(1)若a=0,求F(x)=f(x)+g(x)的零點(diǎn);
(2)設(shè)命題P:f(x)在[$\frac{1}{4}$,$\frac{1}{2}$]單調(diào)遞減,q:g(x)的定義域?yàn)镽,若p∧q為真命題,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一點(diǎn)P到兩焦點(diǎn)的距離之積取最大值時(shí),P點(diǎn)的坐標(biāo)是(0,3)或(0,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)a,b,c大于0,則3個(gè)數(shù)$\frac{a},\frac{c},\frac{c}{a}$的值( 。
A.至多有一個(gè)不大于1B.都大于1
C.至少有一個(gè)不大于1D.都小于1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如果角α是第二象限角,則點(diǎn)P(tanα,secα)位于第三象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案