8.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.8+$\frac{4}{3}$πB.8+$\frac{2}{3}$πC.4+$\frac{4π}{3}$D.4+$\frac{2π}{3}$

分析 由已知中的三視圖可得:該幾何體是一個(gè)四棱柱與半球的組合體,進(jìn)而得到答案.

解答 解:由已知中的三視圖可得:該幾何體是一個(gè)四棱柱與半球的組合體,
故體積V=1×2×4+$\frac{1}{2}$×$\frac{4}{3}π$=8+$\frac{2}{3}$π,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是球的體積與表面積,棱柱的體積與表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的一個(gè)頂點(diǎn)坐標(biāo)為(0,1),其離心率為$\frac{\sqrt{6}}{3}$
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓上一點(diǎn)P滿足∠F1PF2=60°,其中F1,F(xiàn)2為橢圓的左右焦點(diǎn),求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,某生態(tài)園將一塊三角形地ABC的一角APQ開辟為水果園,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP、AQ總長度為200米,如何可使得三角形地塊APQ面積最大?
(2)已知竹籬笆長為50$\sqrt{3}$米,AP段圍墻高1米,AQ段圍墻高2米,造價(jià)均為每平方米100元,若AP≥AQ,求圍墻總造價(jià)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“關(guān)于x的方程x2-mx+n=0有兩個(gè)正根”是“方程mx2+ny2=1的曲線是橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=cos2x-$\sqrt{3}$sin2x,把y=f(x)的圖象向左平移$φ({|φ|<\frac{π}{2}})$個(gè)單位后,得到的部分圖象如圖所示,則f(φ)的值等于( 。
A.$-\sqrt{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知一組數(shù)據(jù)(2,3),(4,6),(6,9),(x0,y0)的線性回歸方程為$\stackrel{∧}{y}$=x+2,則x0-y0的值為( 。
A.2B.4C.-4D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x$({{e^x}-\frac{1}{e^x}})$,若f(x1)<f(x2),則( 。
A.x1>x2B.x1<x2C.${x}_{1}^{2}$<${x}_{2}^{2}$D.x1+x2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將二項(xiàng)式${(x+\frac{2}{{\sqrt{x}}})^6}$展開式各項(xiàng)重新排列,則其中無理項(xiàng)互不相鄰的概率是( 。
A.$\frac{2}{7}$B.$\frac{1}{35}$C.$\frac{8}{35}$D.$\frac{7}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖所示的算法流程圖中,輸出S的值為49.

查看答案和解析>>

同步練習(xí)冊答案