【題目】設(shè)函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=( )
A.0
B.
C.
D.
【答案】D
【解析】解:∵f(x)=2x﹣cosx, ∴f(a1)+f(a2)+…+f(a5)=2(a1+a2+…+a5)﹣(cosa1+cosa2+…+cosa5),
∵{an}是公差為 的等差數(shù)列,
∴a1+a2+…+a5=5a3 , 由和差化積公式可得,
cosa1+cosa2+…+cosa5
=(cosa1+cosa5)+(cosa2+cosa4)+cosa3
=[cos(a3﹣ ×2)+cos(a3+ ×2)]+[cos(a3﹣ )+cos(a3+ )]+cosa3
=2cosa3cos +2cosa3cos(﹣ )+cosa3=cosa3(1+ + ),
則cosa1+cosa2+…+cosa5的結(jié)果不含π,
又∵f(a1)+f(a2)+…+f(a5)=5π,
∴cosa3=0,故a3= .
[f(a3)]2﹣a1a5=π2﹣( ﹣2 ) = .
故選:D.
【考點精析】本題主要考查了等差數(shù)列的性質(zhì)的相關(guān)知識點,需要掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列的前n項和為,滿足,且,公比大于1的等比數(shù)列滿足, .
(1)求證數(shù)列是等差數(shù)列,并求其通項公式;
(2)若,求數(shù)列的前n項和;
(3)在(2)的條件下,若對一切正整數(shù)n恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在拋物線上,且到拋物線的焦點的距離等于2.
求拋物線的方程;
若直線與拋物線相交于兩點,且為坐標原點),求證直線恒過軸上的某定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)電飯煲,每年需投入固定成本40萬元,每生產(chǎn)1萬件還需另投入16萬元的變動成本,設(shè)該公司一年內(nèi)共生產(chǎn)電飯煲萬件并全部銷售完,每一萬件的銷售收入為萬元,且(),該公司在電飯煲的生產(chǎn)中所獲年利潤為(萬元),(注:利潤=銷售收入-成本)
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式,并求年利潤的最大值;
(2)為了讓年利潤不低于2360萬元,求年產(chǎn)量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù)),,.
(1)記函數(shù),且,求的單調(diào)增區(qū)間;
(2)若對任意,,,均有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱臺中, 與分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , , 為中點, (, ).
(1)設(shè)中點為, ,求證: 平面;
(2)若到平面的距離為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , , 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條直線l1(3+m)x+4y=5﹣3m,l2 2x+(5+m)y=8.當m分別為何值時,l1與l2:
(1)相交?
(2)平行?
(3)垂直?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com