分析 (Ⅰ)根據(jù)等差數(shù)列的性質(zhì)可即可得到關(guān)于q的方程解得即可,
(Ⅱ)根據(jù)等比數(shù)列和等差數(shù)列的前n項和公式計算即可.
解答 解:(Ⅰ)因為3a1,2a2,a3成等差數(shù)列,
所以4a2=3a1+a3.
所以$4{a_1}q=3{a_1}+{a_1}{q^2}$.
所以q2-4q+3=0.
所以q=3或q=1(舍).
所以${a_n}=2•{3^{n-1}}$.
(Ⅱ)bn=-6+(n-1)•2=2n-8.
所以${a_n}+{b_n}=2n-8+2•{3^{n-1}}$.
所以Sn=(a1+a2+…+an)+(b1+b2+…+bn)
=$\frac{n(-6+2n-8)}{2}+\frac{{2(1-{3^n})}}{1-3}$=n2-7n+3n-1.
點評 本題考查{an}的公比q及通項公式an的求法,考查數(shù)列的前n項和的求法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x=2,x=3} | B. | {(2,3)} | C. | {2,3} | D. | 2,3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{204}$ | B. | $\frac{45}{68}$ | C. | $\frac{15}{68}$ | D. | $\frac{5}{68}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com