1.函數(shù)$y=sin(2x+\frac{π}{3})$圖象中的一條對(duì)稱軸的方程是(  )
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{12}$

分析 根據(jù)正弦函數(shù)圖象對(duì)稱軸的公式,令2x+$\frac{π}{3}$=$\frac{π}{2}$+kπ(k∈Z),解得函數(shù)的對(duì)稱軸方程,令k=0求出函數(shù)圖象的一條對(duì)稱軸,對(duì)照選項(xiàng)選出答案.

解答 解:令2x+$\frac{π}{3}$=$\frac{π}{2}$+kπ(k∈Z),解得x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈Z),
∴函數(shù)$y=sin(2x+\frac{π}{3})$圖象的對(duì)稱軸方程為x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈Z),
取整數(shù)k=0,得x=$\frac{π}{12}$為函數(shù)圖象的一條對(duì)稱軸,
故選:A.

點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象與性質(zhì):函數(shù)圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在數(shù)列{an}中,Sn+1=4an+2,a1=1.
(1)設(shè)bn=an+1-2an,求證數(shù)列{bn}是等比數(shù)列;
(2)設(shè)cn=$\frac{a_n}{2^n}$,求證數(shù)列{cn}是等差數(shù)列;
 (3)在(2)的條件下設(shè)dn=$\frac{1}{{c}_{n}•{c}_{n+1}}$,求{dn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若以橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的右頂點(diǎn)為圓心的圓與直線x+$\sqrt{3}$y+2=0相切,則該圓的標(biāo)準(zhǔn)方程是(x-2)2+y2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{sinx}{sinx+2sin\frac{x}{2}}$,則f(x)最小正周期為4π,奇偶性為偶.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若變量x,y滿足$\left\{\begin{array}{l}x-y+1≤0\\ x+y-5≤0\\ x≥0\end{array}\right.$,則點(diǎn)P(x,y)表示的區(qū)域的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將石子擺成如圖的梯形形狀,稱數(shù)列5,9,14,20,…為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,此數(shù)列的第2 016項(xiàng)與5的差,即a2016-5=( 。
A.2 018×2 014B.2 018×2 013C.1 011×2 015D.1 010×2 012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列{an}中,a1=2,an+1=an+ln(1+$\frac{1}{n}$),則an=(  )
A.2+lnnB.2+(n-1)lnnC.lnn-2D.1+n+lnn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知α是△ABC的一個(gè)內(nèi)角,且$sinα+cosα=\frac{1}{5}$,
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)求$\frac{{sinxcosx+{{sin}^2}x}}{1-tanx}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.復(fù)數(shù)z=$\frac{{m}^{2}+m-6}{m}$+(m2-2m)i為純虛數(shù),m=-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案