20.已知集合U={-1,0,1,2},A={-1,2},則∁UA=( 。
A.{0}B.{1}C.{0,1}D.{-1,0,1}

分析 直接利用補集的概念進行運算.

解答 解:集合U={-1,0,1,2},A={-1,2},則∁UA={0,1},
故選:C.

點評 本題考查了補集的概念及運算,是基礎的會考題型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知命題p:?x∈R,sinx=2;命題q:?x∈R,x 2-x+1>0.則下列結(jié)論正確的是( 。
A.命題是p∨q假命題B.命題是p∧q真命題
C.命題是(?p)∨(?q)真命題D.命題是(?p)∧(?q)真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列命題中正確的是( 。
A.a>b,c>d⇒a-c>b-dB.ac2>bc2⇒a>bC.ac<bc⇒a<bD.a>b⇒$\frac{a}{c}$>$\frac{c}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=2sinxcosx-sin2x-3cos2x+1.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)y=f(x)在區(qū)間[0,a]上恰有3個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知f(x)的導函數(shù)為f'(x),滿足xf'(x)+2f(x)=$\frac{1}{x}$,且f(1)=2,則f(x)的最小值為(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)y=cos2x-sinx,x∈[-$\frac{π}{4}$,$\frac{π}{2}$]的值域是[-1,$\frac{5}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設函數(shù)f(x)=ln(x+1)+a(x2-x),其中a∈R.
(1)當a=0時,求證:f(x)<x,對任意的x∈(0,+∞)成立;
(2)討論函數(shù)f(x)極值點的個數(shù),并說明理由;
(3)若?x>0,f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設二次函數(shù)f(x)=-x2+2ax+b,集合A={x|x2+x=0},集合B={x|f(x)=5},已知A∩B={0}.
(1)求b的值;
(2)求此二次函數(shù)f(x)在區(qū)間[-2,4]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.求滿足下列條件的圓的方程:
(1)經(jīng)過點P(5,1),圓心為點C(8,-3);
(2)求經(jīng)過A(6,5),B(0,1)兩點,并且圓心在直線3x+10y+9=0上的圓的方程.

查看答案和解析>>

同步練習冊答案