1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,雙曲線 x2-y2=1的漸近線與橢圓C有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為8,則橢圓C的方程為( 。
A.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{5}$=1

分析 確定雙曲線x2-y2=1的漸近線方程為y=±x,根據(jù)以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為8,可得($\sqrt{2},\sqrt{2}$)在橢圓上,再結(jié)合橢圓的離心率,即可確定橢圓的方程.

解答 解:由題意,雙曲線x2-y2=1的漸近線方程為y=±x,
∵以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為8,∴邊長(zhǎng)為$2\sqrt{2}$,
∴($\sqrt{2}$,$\sqrt{2}$)在橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上,
∴$\frac{2}{{a}^{2}}+\frac{2}{^{2}}=1$,①
∵橢圓的離心率為$\frac{\sqrt{2}}{2}$,
∴$\frac{{a}^{2}-^{2}}{{a}^{2}}=(\frac{\sqrt{2}}{2})^{2}=\frac{1}{2}$,則a2=2b2,②
聯(lián)立①②解得:a2=6,b2=3.
∴橢圓方程為:$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}=1$.
故選:C.

點(diǎn)評(píng) 本題考查橢圓及雙曲線的性質(zhì),考查橢圓的標(biāo)準(zhǔn)方程與性質(zhì),考查學(xué)生的計(jì)算能力,正確運(yùn)用雙曲線的性質(zhì)是關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=2|x+1|-|x-1|.
(Ⅰ)求函數(shù)f(x)的圖象與直線y=1圍成的封閉圖形的面積m;
(Ⅱ)在(Ⅰ)的條件下,若(a,b)(a≠b)是函數(shù)g(x)=$\frac{m}{x}$圖象上一點(diǎn),求$\frac{{a}^{2}+^{2}}{a-b}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.“a+b=1”是“直線x+y+1=0與圓(x-a)2+(y-b)2=2相切”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.公元263年左右,我國(guó)古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率π,他從圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,24,48,…,192,…,逐個(gè)算出正六邊形,正十二邊形,正二十四邊形,…,正一百九十二邊形,…的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時(shí)候π的近似值是3.141024,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來(lái)逼近未知的、要求的,用有限來(lái)逼近無(wú)窮,這種思想及其重要,對(duì)后世產(chǎn)生了巨大影響,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,若運(yùn)行改程序(參考數(shù)據(jù):$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),則輸出n的值為( 。
A.48B.36C.30D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,當(dāng)n≥2時(shí),an=2anSn-2Sn2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正數(shù)k,使(1+S1)(1+S2)…(1+Sn)≥k$\sqrt{2n+1}$對(duì)一切正整數(shù)n都成立?若存在,求k的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若$A=45°,a=\sqrt{2},b=\sqrt{3}$,則B等于(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知P,Q為動(dòng)直線y=m(0<m<$\frac{{\sqrt{2}}}{2}$)與y=sinx和y=cosx在區(qū)間$[0,\frac{π}{2}]$上的左,右兩個(gè)交點(diǎn),P,Q在x軸上的投影分別為S,R.當(dāng)矩形PQRS面積取得最大值時(shí),點(diǎn)P的橫坐標(biāo)為x0,則(  )
A.${x_0}<\frac{π}{8}$B.${x_0}=\frac{π}{8}$C.$\frac{π}{8}<{x_0}<\frac{π}{6}$D.${x_0}>\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知i是虛數(shù)單位,復(fù)數(shù)z=$\frac{1}{2+i}$,則z•$\overline{z}$=( 。
A.25B.5C.$\frac{1}{25}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若y=f(x)圖象有兩條對(duì)稱軸x=a,x=b,(a≠b),則y=f(x)必是周期函數(shù),且一周期為2|a-b|.

查看答案和解析>>

同步練習(xí)冊(cè)答案