13.若y=f(x)圖象有兩條對稱軸x=a,x=b,(a≠b),則y=f(x)必是周期函數(shù),且一周期為2|a-b|.

分析 若y=f(x)圖象有兩條對稱軸x=a,x=b,(a≠b),則y=f(x)必是周期函數(shù),且一周期為2|a-b|,根據(jù)函數(shù)的對稱性和周期性,可證得結論.

解答 解:若y=f(x)圖象有兩條對稱軸x=a,x=b,(a≠b),
則y=f(x)必是周期函數(shù),且一周期為2|a-b|,
理由如下:
由已知可得:f(x)=f(2a-x),且f(x)=f(2b-x),
不妨令a>b,
則f[x+(2a-2b)]=f(2a-x-2a+2b)=f(2b-x)=f(x),
即此時y=f(x)的周期為2a-2b;
同理可得:a<b時,y=f(x)的周期為2b-2a;
綜上可得:y=f(x)的周期為2|a-b|.
故答案為:2|a-b|

點評 本題考查的知識點是抽象函數(shù)的周期性和對稱性,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,雙曲線 x2-y2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為8,則橢圓C的方程為( 。
A.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{5}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax2+3x+b(a,b∈R).
(Ⅰ)當a=2,b=0時,求f(x)在[0,3]上的值域.
(Ⅱ)對任意的b,函數(shù)g(x)=|f(x)|-$\frac{2}{3}$的零點不超過4個,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知定義在R上的函數(shù)f(x)滿足:f(x+1)=$\sqrt{f(x){-f}^{2}(x)}+\frac{1}{2}$,數(shù)列{an}滿足an=f2(n)-f(n),n∈N*,若其前n項和為-$\frac{35}{16}$,則n的值為(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.△ABC中,2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,求$\frac{{S}_{△OBC}}{{S}_{△ABC}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,若2B=A+C,求tanA+tanC-$\sqrt{3}$tanAtanC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,若輸入如下四個函數(shù):①f(x)=sinx,②f(x)=cosx,③f(x)=$\frac{1}{x}$,④f(x)=lg$\frac{1-x}{1+x}$,則輸出的函數(shù)是( 。
A.f(x)=sinxB.f(x)=cosxC.f(x)=$\frac{1}{x}$D.f(x)=lg$\frac{1-x}{1+x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知雙曲線$\frac{x^2}{3}-\frac{y^2}{2}=1$的左,右焦點分別為F1,F(xiàn)2,O為坐標原點,圓O是以F1F2為直徑的圓,直線$l:\sqrt{2}x+\sqrt{3}y+t=0$與圓O有公共點.則實數(shù)t的取值范圍是( 。
A.$[{-2\sqrt{2},2\sqrt{2}}]$B.[-4,4]C.[-5,5]D.$[{-5\sqrt{2},5\sqrt{2}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=(x2+a)ex(a是常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)與x軸相切.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)設方程f(x)=x2+x的所有根之和為S,且S∈(n,n+1),求整數(shù)n的值;
(Ⅲ)若關于x的不等式mf(x)+2x+2<2ex在(-∞,0)內恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案