17.設(shè)P為直線(xiàn)x-y=0上的一動(dòng)點(diǎn),過(guò)P點(diǎn)做圓(x-4)2+y2=2的兩條切線(xiàn),切點(diǎn)分別為A,B,則∠APB的最大值60°.

分析 由題意,∠APB最大時(shí),圓心C到直線(xiàn)的距離最小為$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$,sin∠APC=$\frac{1}{2}$,即可求出∠APB的最大值.

解答 解:由題意,∠APB最大時(shí),圓心C到直線(xiàn)的距離最小為$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$,sin∠APC=$\frac{1}{2}$
∴∠APC=30°,
∴∠APB=60°.
故答案為60°.

點(diǎn)評(píng) 本題考查直線(xiàn)與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖表示一位騎自行車(chē)者與一位騎摩托車(chē)者在相距80km的兩城鎮(zhèn)間旅行的函數(shù)圖象,由圖中信息,判斷以下說(shuō)法正確的序號(hào)為( 。
①騎自行車(chē)者比騎摩托車(chē)者早出發(fā)3小時(shí),晚到1小時(shí);
②騎自行車(chē)者是變速運(yùn)動(dòng),騎摩托車(chē)者是勻速運(yùn)動(dòng);
③騎摩托車(chē)者出發(fā)后1.5小時(shí)后追上了騎自行車(chē)者.
A.①③B.①②C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,且3bcosA-3acosB=c,則下列結(jié)論正確的是( 。
A.tanB•tanA=2BB.tanA=2tanBC.tanB=2tanAD.tanA+tanB=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知命題P::直線(xiàn)mx-y+2=0與圓x2+y2-2x-4y+$\frac{19}{4}$=0有兩個(gè)交點(diǎn);命題:$q:?{x_0}∈[{-\frac{π}{6},\frac{π}{4}}],2sin({2{x_0}+\frac{π}{6}})+2cos2{x_0}$≤m.
(1)若p∧q為真命題,求實(shí)數(shù)m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.點(diǎn)P(x,y)在橢圓$\frac{x^2}{16}+\frac{y^2}{12}=1$上,則x+2y的最大值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$),當(dāng)x=-$\frac{π}{4}$時(shí)函數(shù)f(x)能取得最小值,當(dāng)x=$\frac{π}{4}$時(shí)函數(shù)y=f(x)能取得最大值,且f(x)在區(qū)間($\frac{π}{18}$,$\frac{5π}{36}$)上單調(diào).則當(dāng)ω取最大值時(shí)φ的值為-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知集合A是函數(shù)f(x)=$\sqrt{5+a-x}$+$\frac{1}{\sqrt{x-a}}$的定義域,B={x|-$\frac{a}{2}$<x≤6}.
(I)是否存在實(shí)數(shù)a,使∁R(A∪B)=(∁RA)∪(∁RB)?若存在,請(qǐng)求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{6}}}{3}$,過(guò)點(diǎn)$M(-\sqrt{6},-1)$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)G,H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH,試問(wèn):是否存在以原點(diǎn)O為圓心的定圓始終與直線(xiàn)GH相切?若存在,請(qǐng)求出該定圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直角坐標(biāo)系xOy中,已知直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρ2cos2θ=1.直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn).
(I)求|AB|的長(zhǎng);
(II)若P點(diǎn)的極坐標(biāo)為$({1,\frac{π}{2}})$,求AB中點(diǎn)M到P的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案