已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.

(1)(2)

解析試題分析:解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a7/e/1g6gy3.png" style="vertical-align:middle;" />是方程的兩根,且數(shù)列的公差
所以,公差.所以.  
又當(dāng)時(shí),有,所以.
當(dāng)時(shí),有,所以.
所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,
所以.       
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fb/8/1npjt2.png" style="vertical-align:middle;" />,
,①
,②
由①-②,得,
整理,得.         
考點(diǎn):數(shù)列的通項(xiàng)公式;數(shù)列的前n項(xiàng)和公式
點(diǎn)評(píng):對(duì)于求一般數(shù)列的通項(xiàng)公式或前n項(xiàng)和時(shí),常用方法有:錯(cuò)位相減法、裂變法等,目的是消去中間部分。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列中,且滿(mǎn)足 (  )
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

是公比大于的等比數(shù)列,的前項(xiàng)和.若,且,,構(gòu)成等差數(shù)列.
(Ⅰ)求的通項(xiàng)公式.
(Ⅱ)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是一個(gè)等差 數(shù)列,且。
(1)求的通項(xiàng); (2)求的前項(xiàng)和的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的第二項(xiàng)為8,前10項(xiàng)和為185。
(1)求數(shù)列的通項(xiàng)公式;
(2)若從數(shù)列中,依次取出第2項(xiàng),第4項(xiàng),第8項(xiàng),……,第項(xiàng),……按原來(lái)順序組成一個(gè)新數(shù)列,試求數(shù)列的通項(xiàng)公式和前n項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等差數(shù)列中,為前n項(xiàng)和,且滿(mǎn)足
(1)求及數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的前n項(xiàng)和為,且滿(mǎn)足,.
(1)求數(shù)列的通項(xiàng)及前n項(xiàng)和;
(2)令(),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是等差數(shù)列,,數(shù)列的前n項(xiàng)和是,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)求證:數(shù)列是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

本小題滿(mǎn)分12分)設(shè)a、b、c成等比數(shù)列,非零實(shí)數(shù)x,y分別是a與b, b與c的等差中項(xiàng)。
(1)已知①a=1、b=2、c=4,試計(jì)算的值;
②a=-1、b= 、c="-" ,試計(jì)算的值
(2)試推測(cè)與2的大小關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊(cè)答案