【題目】如圖,A,B,C是橢圓M: 上的三點,其中點A是橢圓的右頂點,BC過橢圓M的中心,且滿足AC⊥BC,BC=2AC。
(1)求橢圓的離心率;
(2)若y軸被△ABC的外接圓所截得弦長為9,求橢圓方程。
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)求直線AB與平面CBF所成角的大;
(Ⅲ)當AD的長為何值時,平面DFC與平面FCB所成的銳二面角的大小為60°?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取50名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.
(1)若該校高一年級共有學生1000人,試估計成績不低于60分的人數(shù);
(2)為了幫助學生提高數(shù)學成績,學校決定在隨機抽取的50名學生中成立“二幫一”小組,即從成績[90,100]中選兩位同學,共同幫助[40,50)中的某一位同學.已知甲同學的成績?yōu)?2分,乙同學的成績?yōu)?5分,求甲、乙恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某個體服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求純利y與每天銷售件數(shù)x之間的回歸方程;
(2)若該周內(nèi)某天銷售服裝20件,估計可獲純利多少元?
已知: x =280, y =45309, xiyi=3487, = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程2x2﹣bx+ =0的兩根為sinθ、cosθ,θ∈( , ).
(1)求實數(shù)b的值;
(2)求 + 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+x2 (a為實常數(shù)).
(1)當a=﹣4時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當x∈[1,e]時,討論方程f(x)=0根的個數(shù);
(3)若 a>0,且對任意的x1 , x2∈[1,e],都有|f(x1)﹣f(x2)| ,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)。
(1)若f(x)的圖象與g(x)的圖象所在兩條曲線的一個公共點在y軸上,且在該點處兩條曲線的切線互相垂直,求b和c的值。
(2)若a=c=1,b=0,試比較f(x)與g(x)的大小,并說明理由;
(3)若b=c=0,證明:對任意給定的正數(shù)a,總存在正數(shù)m,使得當x時,
恒有f(x)>g(x)成立。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】秦九韶算法是中國南宋時期的數(shù)學家秦九韶提出的一種多項式簡化算法,對于求一個n次多項式函數(shù)fn(x)=anxn+an﹣1xn﹣1+…+a1x+a0的具體函數(shù)值,運用常規(guī)方法計算出結(jié)果最多需要n次加法和 乘法,而運用秦九韶算法由內(nèi)而外逐層計算一次多項式的值的算法至多需要n次加法和n次乘法.對于計算機來說,做一次乘法運算所用的時間比做一次加法運算要長得多,所以此算法極大地縮短了CPU運算時間,因此即使在今天該算法仍具有重要意義.運用秦九韶算法計算f(x)=0.5x6+4x5﹣x4+3x3﹣5x當x=3時的值時,最先計算的是( )
A.﹣5×3=﹣15
B.0.5×3+4=5.5
C.3×33﹣5×3=66
D.0.5×36+4×35=1336.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出50個數(shù),1,2,4,7,11,…,其規(guī)律是:第1個數(shù)是1,第2個數(shù)比第1個數(shù)大1,第3個數(shù)比第2個數(shù)大2,第4個數(shù)比第3個數(shù)大3,…,以此類推.要求計算這50個數(shù)的和.將右邊給出的程序框圖補充完整,
(1)___________________ (2)_______________________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com