2.三個數(shù)a=0.65,b=50.6,c=log0.65,則a,b,c的大小關系為( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調性即可得出.

解答 解:∵a=0.65∈(0,1),b=50.6>1,c=log0.65<0,
∴c<a<b.
故選:C.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調性,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=2-x+1-x的零點所在區(qū)間為( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設集合A={x|2x-2<1},B={x|1-x≥0},則A∩B等于( 。
A.{x|0<x≤1}B.{x|1≤x<2}C.{x|x≤1}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.數(shù)列{an}是公差不為零的等差數(shù)列,Sn是其前n項和,已知a2+a3+a5=20,且a2、a4、a8成等比數(shù)列,記M=$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.
(1)求M;
(2)數(shù)列{bn}的前n項和為Tn,已知Tn=2(bn-1),試比較Tn與M+1的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設變量x,y滿足約束條件$\left\{\begin{array}{l}{2-y≥0}\\{x-3y+2≤0}\\{4x-5y+2≥0}\end{array}\right.$,則目標函數(shù)z=x-2y的最大值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知下列命題:
①有兩個側面是矩形的四棱柱是直四棱柱;
②若一個三棱錐三個側面都是全等的等腰三角形,則此三棱錐是正三棱錐;
③已知f(x)的定義域為[-2,2],則f(2x-3)的定義域為[1,3];
④設函數(shù)y=f(x)定義域為R,則函數(shù)y=f(1-x)與y=f(x-1)的圖象關于直線x=1對稱;
⑤已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x≤2}\\{-\frac{1}{2}x+2,x>2}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是(2,4)
其中正確的是④⑤.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.對于常數(shù)m、n,“關于x的方程x2-mx+n=0有兩個正根”是“方程mx2+ny2=1的曲線是橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.若A={x|-3≤x≤4},B={x|-1≤x≤m+1},B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知拋物線C 的頂點在原點,F(xiàn)($\frac{1}{2}$,0)為拋物線的焦點.
(1)求拋物線C 的方程;
(2)過點F 的直線l與動拋物線C 交于 A、B 兩點,與圓M:${(x-\frac{3}{2})^2}+{(y-8)^2}=49$交于D、E兩點,且D、E位于線段 AB上,若|AD|=|BE|,求直線l的方程.

查看答案和解析>>

同步練習冊答案