8.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=3+2t\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ-16cosθ=0,直線l與曲線C交于A,B兩點(diǎn),點(diǎn)P(1,3),
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

分析 (1)利用三種方程的轉(zhuǎn)化方法,求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)直線的參數(shù)方程改寫為$\left\{\begin{array}{l}x=1+\frac{{\sqrt{5}}}{5}t\\ y=3+\frac{{2\sqrt{5}}}{5}t\end{array}\right.$,代入y2=16x,利用參數(shù)的幾何意義求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

解答 解:(1)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=3+2t\end{array}\right.$(t為參數(shù)),消去參數(shù),可得直線l的普通方程y=2x+1,
曲線C的極坐標(biāo)方程為ρsin2θ-16cosθ=0,即ρ2sin2θ=16ρcosθ,曲線C的直角坐標(biāo)方程為y2=16x,
(2)直線的參數(shù)方程改寫為$\left\{\begin{array}{l}x=1+\frac{{\sqrt{5}}}{5}t\\ y=3+\frac{{2\sqrt{5}}}{5}t\end{array}\right.$,
代入y2=16x,$\frac{4}{5}{t^2}-\frac{{4\sqrt{5}}}{5}t-7=0$,${t_1}+{t_2}=\sqrt{5}$,${t_1}{t_2}=-\frac{35}{4}$,
$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=|{\frac{{{t_1}-{t_2}}}{{{t_1}{t_2}}}}|=\frac{{8\sqrt{10}}}{35}$.

點(diǎn)評(píng) 本題考查三種方程的轉(zhuǎn)化,考查參數(shù)方程的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,直線y=$\frac{\sqrt{5}}{3}$b與橢圓C交于A、B兩點(diǎn).若四邊形ABF2F1是矩形,則橢圓C的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.i是虛數(shù)單位,設(shè)(1+i)x=1+yi,其中x,y是實(shí)數(shù),則|x+yi|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在四邊形ABCD中,若AB=2,$BC=2\sqrt{2}$,$AD=\sqrt{2}CD$,$\overrightarrow{AC}\overrightarrow{•CD}=0$,則$|{\overrightarrow{BD}}|$的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,前n項(xiàng)和為Sn;數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2+S3=8.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某椎體的三視圖如圖所示,則該棱錐的最長棱的棱長為( 。
A.$\sqrt{33}$B.$\sqrt{17}$C.$\sqrt{41}$D.$\sqrt{42}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z滿足$\frac{1-i}{\overline{z}}$=i(其中i為虛數(shù)單位),則z2=( 。
A.2iB.-2iC.2+2iD.2-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.現(xiàn)有7名數(shù)理化成績優(yōu)秀者,分別用A1,A2,A3,B1,B2,C1,C2表示,其中A1,A2,A3的數(shù)學(xué)成績優(yōu)秀,B1,B2的物理成績優(yōu)秀,C1,C2的化學(xué)成績優(yōu)秀.從中選出數(shù)學(xué)、物理、化學(xué)成績優(yōu)秀者各1名,組成一個(gè)小組代表學(xué)校參加競賽,則A1或B1僅一人被選中的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

同步練習(xí)冊答案