分析 (1)設(shè)等差數(shù)列{an}的公差為d,d>0,{bn}的公比為q,運(yùn)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式,解方程可得公差和公比,即可得到所求通項(xiàng)公式;
(2)求得an•bn=n•2n-1.運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理即可得到所求和.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,d>0,{bn}的公比為q,
則an=1+(n-1)d,bn=qn-1.
由b2S2=6,b2+S3=8,
有q(2+d)=6,q+3+3d=8,
解得d=1,q=2,或q=9,d=-$\frac{4}{3}$(舍去),
故an=n,bn=2n-1.
(2)an•bn=n•2n-1.
前n項(xiàng)和為Tn=1•20+2•21+3•22+…+n•2n-1,
2Tn=1•21+2•22+3•23+…+n•2n.
兩式相減可得-Tn=1+21+22+…+2n-1-n•2n
=$\frac{1-{2}^{n}}{1-2}$-n•2n.
化簡可得Tn=1+(n-1)•2n.
點(diǎn)評 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查方程思想,以及數(shù)列的求和方法:錯(cuò)位相減法,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com